Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)
A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)
A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)
A=\(\dfrac{7}{24}\)
B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)
B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)
B=\(1+\left(-1\right)+\left(-1\right)=-1\)
C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)
C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)
C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)
D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)
D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)
D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)
a, Ta có :
\(\dfrac{1}{6}< \dfrac{1}{5}\)
\(\dfrac{1}{7}< \dfrac{1}{5}\)
.................
\(\dfrac{1}{9}< \dfrac{1}{5}\)
\(\dfrac{1}{10}=\dfrac{1}{10}\)
\(\dfrac{1}{11}< \dfrac{1}{10}\)
..................
\(\dfrac{1}{17}< \dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+......+\dfrac{1}{17}< \dfrac{1}{5}+\dfrac{1}{5}+....+\dfrac{1}{5}\)
\(\Leftrightarrow A< \dfrac{1}{5}.5+\dfrac{1}{10}.8\)
\(\Leftrightarrow A< 1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)
\(\Leftrightarrow A< 2\left(đpcm\right)\)
b/ Ta có :
\(\dfrac{1}{11}>\dfrac{1}{30}\)
\(\dfrac{1}{12}>\dfrac{1}{30}\)
...............
\(\dfrac{1}{29}>\dfrac{1}{30}\)
\(\dfrac{1}{30}=\dfrac{1}{30}\)
\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+........+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+.......+\dfrac{1}{30}\)
\(\Leftrightarrow B>\dfrac{1}{30}.20=\dfrac{2}{3}\)
\(\Leftrightarrow B>\dfrac{2}{3}\left(đpcm\right)\)
a: \(\Leftrightarrow-\dfrac{720}{150}=-4.8< x< \dfrac{-63}{210}=-0.3\)
mà x là số nguyên
nen \(x\in\left\{-4;-3;-2;-1\right\}\)
b: \(\Leftrightarrow-\dfrac{125}{27}< x< \dfrac{120}{210}=\dfrac{4}{7}\)
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1;0\right\}\)
a: \(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}< x< \dfrac{1}{48}-\dfrac{1}{16}+\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{6}{12}-\dfrac{4}{12}-\dfrac{3}{12}< x< \dfrac{1}{48}-\dfrac{3}{48}+\dfrac{8}{48}\)
\(\Leftrightarrow\dfrac{-1}{12}< x< \dfrac{1}{8}\)
\(\Leftrightarrow-2< 24x< 3\)
=>x=0
b: \(\Leftrightarrow\dfrac{9-10}{12}< \dfrac{x}{12}< 1-\dfrac{8-3}{12}=\dfrac{7}{12}\)
=>-1<x<7
hay \(x\in\left\{0;1;2;3;4;5;6\right\}\)
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
a: \(\Leftrightarrow70+18< x< 120+126+70\)
=>88<x<316
hay \(x\in\left\{89;90;...;315\right\}\)
b: \(\Leftrightarrow-\dfrac{9}{3}< x< \dfrac{8}{5}+\dfrac{9}{5}=\dfrac{17}{5}\)
=>-3<x<3,4
hay \(x\in\left\{-2;-1;0;1;2;3\right\}\)
Đặt :
\(A=\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...................+\dfrac{1}{17}\)
*Nhận xét :
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+.......................+\dfrac{1}{10}< \dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{5}+...............+\dfrac{1}{5}\)
\(\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+..............+\dfrac{1}{17}< \dfrac{1}{11}+\dfrac{1}{11}+.............+\dfrac{1}{11}\)
\(\Rightarrow A< \left(\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{5}+...........+\dfrac{1}{5}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+............+\dfrac{1}{11}\right)\)
\(\Rightarrow A< \left(\dfrac{1+1+1+................+1}{5}\right)+\left(\dfrac{1+1+1+..........+1}{11}\right)\)
\(\Rightarrow A< \dfrac{6}{5}+\dfrac{7}{11}\)
\(\Rightarrow A< \dfrac{110}{55}=2\)
\(\Rightarrow A< 2\)
Vậy \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+.................+\dfrac{1}{17}< 2\) \(\left(đpcm\right)\)
Chúc bn học tốt !!!!!!!!!
9