Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số nguyên x, biết:
1) -16 + 23 + x = - 16
7+x=-16
x=-16-7
x=-23
2) 2x – 35 = 15
2x=15+35
2x=50
x=50:2
x=25
3) 3x + 17 = 12
3x=12-17
3x=-5
x=-5/3
4) (2x – 5) + 17 = 6
2x-5=6-17
2x-5=-11
2x=-11+5
2x=-6
x=-6:2
x=-3
5) 10 – 2(4 – 3x) = -4
2(4-3x)=10-(-4)
2(4-3x)=14
4-3x=14:2
4-3x=7
3x=4-7
3x=-3
x=-3:3
x=-1
6) - 12 + 3(-x + 7) = -18
3(-x+7)=-18-(-12)
3(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9
1) 10 - 3 ( x - 1 ) = -5
3 ( x - 1 ) = 10 - ( - 5 )
3 ( x - 1 ) = 15
x - 1 = 15 : 3
x - 1 = 5
x = 5 + 1
x = 6
2) 3x + 75 = - 15
3x = - 15 - 75
3x = - 90
x = -90 : 3
x = -30
4) 12 - ( x - 7 ) = - 8
x - 7 = 12 - (- 8 )
x - 7 = 20
x = 20 + 7
x = 27
5) x + 75 = 15
x = 15 - 75
x = -60
7) 2x + 18 = 10
2x = 10 - 18
2x = -8
x = - 8 : 2
x = -4
8) 26 - 3x = 5
3x = 26 - 5
3x = 21
x = 21: 3
x = 7
9) x - 12 = - 15
x = -15 + 12
x =-3
10 ) 24 - 2 ( x + 5 ) = 38
2 ( x+ 5 ) = 24 - 38
2 ( x + 5 ) = - 14
x + 5 = -14 : 2
x + 5 = -7
x = -7 - 5
x = -12
còn là bạn tự làm tiếp nhé ! bạn gửi nhiều cầu qua bạn chỉ nên gửi ít một thời như vậy khó có thể giải làm bạn ạ!
1. -x+20 = -(-15)-8+13
=> -x=15-8+13-20
=> -x=0
=> x=0
2. -(-10)+x=-13+(-9)+(-6)
=> 10+x=-13-9-6
=> x = -13-9-6-10
=> x = -38
3. 8-(-12)+10=-(-14)-x
=> 8+12+10=14-x
=> x = 14-8-12-10
=> x = -16
4. -(+12)+(-x)-(-3)=5-(-7)
=> -12-x+3=5+7
=> -x=5+7+12-3
=> -x=21
=> x=-21
5. 14-x+(-10)=-(-9)+(+15)
=> 14-x-10=9+15
=> -x=9+15-14+10
=> -x=20
=> x=-20
6. 12-(-17)+(-3)=-5+x
=> 12+17-3+5=x
=> x=31
7. x-(-19)-(+32)=14-(+16)
=> x+19-32=14-16
=> x=14-16+32-19
=> x=11
8. x-|-15|-|7|=-(-9)+|-5|
=> x-15-7=9+5
=> x=9+5+7+15
=> x=36
9. 15-x+17=13-(-21)
=> 15-x+17=13+21
=> -x=13+21-15-17
=> -x=2
=> x=-2
10. -|-5|-(-x)+4=3-(-25)
=> -5+x+4=3+25
=> x=3+25-4+5
=> x=29
c) \(\left(34-2x\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6-0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
d) \(\left(2019-x\right)\left(3x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)
e) \(57\left(9x-27\right)=0\)
\(\Rightarrow9x-27=0\)
\(\Rightarrow9\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
f) \(25+\left(15-x\right)=30\)
\(\Rightarrow25+15-x=30\)
\(\Rightarrow40-x=30\)
\(\Rightarrow x=40-30\)
\(\Rightarrow x=10\)
g) \(43-\left(24-x\right)=20\)
\(\Rightarrow43-24+x=20\)
\(\Rightarrow19+x=20\)
\(\Rightarrow x=20-19\)
\(\Rightarrow x=1\)
h) \(2\left(x-5\right)-17=25\)
\(\Rightarrow2\left(x-5\right)=17+25\)
\(\Rightarrow x-5=21\)
\(\Rightarrow x=21+5\)
\(\Rightarrow x=26\)
i) \(3\left(x+7\right)-15=27\)
\(\Rightarrow3\left(x+7\right)=27+15\)
\(\Rightarrow x+7=14\)
\(\Rightarrow x=14-7\)
\(\Rightarrow x=7\)
j) \(15+4\left(x-2\right)=95\)
\(\Rightarrow4\left(x-2\right)=95-15\)
\(\Rightarrow4\left(x-2\right)=80\)
\(\Rightarrow x-2=20\)
\(\Rightarrow x=20+2\)
\(\Rightarrow x=22\)
k) \(20-\left(x+14\right)=5\)
\(\Rightarrow x+14=20-5\)
\(\Rightarrow x+14=15\)
\(\Rightarrow x=15-14\)
\(\Rightarrow x=1\)
l) \(14+3\left(5-x\right)=27\)
\(\Rightarrow3\left(5-x\right)=27-14\)
\(\Rightarrow3\left(5-x\right)=13\)
\(\Rightarrow5-x=\dfrac{13}{3}\)
\(\Rightarrow x=5-\dfrac{13}{3}\)
\(\Rightarrow x=\dfrac{2}{3}\)
1: =-2/9(15/17+2/17)=-2/9
2: \(=\dfrac{-6}{3}+\dfrac{-21}{90}\)
=-2-7/30=-67/30
3: \(=\dfrac{3}{4}\cdot\dfrac{7}{5}+\dfrac{9}{7}\cdot\dfrac{3}{2}\)
=21/20+27/14=417/140
4: =-25/13(5/19+14/19)=-25/13
5: =-7/5-45/21=-7/5-15/7=-124/35
1: =-2/9(15/17+2/17)=-2/9
2: =−63+−2190=−63+−2190
=-2-7/30=-67/30
3: =34⋅75+97⋅32=34⋅75+97⋅32
=21/20+27/14=417/140
4: =-25/13(5/19+14/19)=-25/13
5: =-7/5-45/21=-7/5-15/7=-124/35
\(\left|x\right|-3+6=16\\ \left|x\right|=13\Rightarrow x=\pm13\)
\(35-\left|2x-1\right|=14\\ \left|2x-1\right|=21\\ \left(2x-1\right)^2=21^2\\ \left(2x-1+21\right)\left(2x-1-21\right)=0\\ 4\left(x+10\right)\left(x-11\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-10\\x=11\end{matrix}\right.\)