K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019
Ta có:x2-6y2=1 =>x2-1=6y2 =>(x-1)(x+1)=6y2 Do 6y2⋮2⇒(x−1)(x+1)⋮2 Mà x-1+x+1=2x =>x-1 và x+1 có cùng tính chẵn lẻ ⇒(x−1)(x+1)⋮8⇒6y2⋮8⇒3y2⋮4 ⇒y2⋮2⇒y⋮2⇒y=2⇒x=5 Nhớ k cho mk nha. Chúc bạn học tốt
16 tháng 1 2019

Do hiệu của chúng là số lẻ nên chúng khác tính chẵn lẻ.

Với:\(51x^2\)là số chẵn \(\Rightarrow x=2\)

\(\Rightarrow51x^2-5y^2=79\)

\(\Rightarrow204-5y^2=79\)

\(\Leftrightarrow5y^2=125\)

\(\Leftrightarrow y^2=25\)

\(\Leftrightarrow y=...\)(tới đây bí)

thử các TH còn lại với 5y^2 chẵn

5 tháng 11 2019

Bài 1: gọi 3 số cần tìm là a;b;c

Theo đề bài a.b.c=5(a+b+c). Vế phải chia hết cho 5 nên a.b.c chia hết cho 5 => trong 3 số a;b;c có ít nhất 1 số chia hết cho 5

Giả sử c là số chia hết cho 5 và c là 1 số nguyên tố => c=5

=> a.b.5=5(a+b+5)=> a.b=a+b+5=> a.b-a=b+5 => a(b-1)=(b-1)+6 => a = 1+6/(b-1)

Vì a;b là các số nguyên => để a là số nguyên thì b-1 phải là ước của 6, do các số nguyên tố đều lớn hơn 1

=> b-1={1; 2;3;6}=> b={2;3;4;7} do b là số nguyên tố nên b=4 loại => b={2;3;7}

Thay vào biểu thức tính a => a={7; 4; 2} do a là số nguyên tố nên a=4 loại => b=3 loại

Vậy 3 số cần tìm là 2;5;7

Thử: 2.5.7=70; 5(2+5+7)=70

31 tháng 3 2019

b, x=y=-1

a) Áp dụng tính chất dãy tỉ số bằng nhau ta dc: 

\(\frac{ab+1}{9}=\frac{ac+2}{15}=\frac{bc+3}{27}=\frac{ab+ac+bc+6}{51}=\frac{17}{51}=\frac{1}{3}\)

=> \(\frac{ab+1}{9}=\frac{1}{3}\)=> ab = 2 (1)

Tương tự nha vậy ta dc: ac = 3 (2) và bc = 6 (3)

Khi đó: (abc)2 = 36 => \(\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)

* Với abc = 6

Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}}\)

* Với abc = - 6

Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=-3\\b=-2\\a=-1\end{cases}}\)

Vậy ...

b) x + 2xy + y = 0

<=> 2x + 4xy + 2y = 0

<=> 2x(1 + 2y) + (1 + 2y) = 1

<=> (2x + 1)(2y + 1) = 1

Tới đây bạn giải theo pt ước số nha

DD
1 tháng 3 2021

\(x-y=4\Leftrightarrow x=4+y\)ta có: 

\(xy+z^2+4=0\)

\(\Rightarrow\left(y+4\right).y+z^2+4=0\)

\(\Leftrightarrow y^2+4y+4+z^2=0\)

\(\Leftrightarrow\left(y+2\right)^2+z^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y+2=0\\z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\Rightarrow x=2\\z=0\end{cases}}\)

17 tháng 7 2019

\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{y}=\frac{x}{4}-\frac{1}{2}\)

\(\Rightarrow\frac{1}{y}=\frac{x-2}{4}\)

\(\Rightarrow\left(x-2\right)y=4\)

ta có bảng : 

x-2-11-44
y-44-11
x13-26

vậy_

27 tháng 2 2019

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)

=> \(\frac{5}{x}=\frac{1-2y}{8}\)

=> 5.8 = x(1 - 2y)

=> x(1 - 2y) = 40

=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}

Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}

Lập bảng :

  1 - 2y  1  -1   5   -5
     x  40  -40  8  -8
    y  0  1  -2  3

Vậy ....

27 tháng 2 2019

\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).

Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên 

Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)

\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)

Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!