K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2024

Nếu p;q đều lẻ \(\Rightarrow7p\) lẻ nên \(7p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (không thỏa mãn)

\(\Rightarrow\) Trong số p; q phải có ít nhất 1 số chẵn

TH1: p chẵn \(\Rightarrow p=2\)

- Với \(q=3\Rightarrow7p+q=7.2+3=17\) là SNT và \(pq+11=2.3+11=17\) là SNT (thỏa mãn)

- Với \(q\ne3\Rightarrow q\) ko chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)

+ Nếu \(q=3k+1\Rightarrow7p+q=14+3k+1=3\left(k+5\right)\) chia hết cho 3 => là hợp số (ktm)

+ Nếu \(q=3k+2\Rightarrow pq+11=2\left(3k+2\right)+11=3\left(2k+5\right)\) chia hết cho 3 => là hợp số (ktm)

TH2: q chẵn \(\Rightarrow q=2\)

- Với \(p=3\) thỏa mãn (em tự kiểm tra)

- Với \(p\ne3\Rightarrow p\) ko chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)

+ Nếu \(p=3k+1\Rightarrow7p+q=7\left(3k+1\right)+2=3\left(7k+3\right)\) chia hết cho 3=> là hợp số (ktm)

+ Nếu \(p=3k+2\Rightarrow pq+11=2\left(3k+2\right)+11=3\left(2k+5\right)\) chia hết cho 3 => là hợp số (ktm)

Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\)

3 tháng 4 2018

Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)\(⋮\)2 hoặc q\(⋮\)2

  1. p\(⋮\)2 mà q là số nguyên tố \(\Rightarrow\)q = 2 

thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố

 \(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)\(⋮\)3 hoặc q chia 3 dư 2

  • q chia 3 dư 2 \(\Rightarrow\)q có dạng 3k+2 (k là số tự nhiên)

thay q=3k+2;p=2 vào pq +11 ta đc

2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)

  • \(⋮\)3\(\Rightarrow\)q có dạng 3a(a là số tự nhiên) 

mà q là số nguyên tố \(\Rightarrow\)q =1

2. chứng minh tương tự

đúng thì k nha

19 tháng 3 2018

Gúp mình nhanh lẹ nhá AI NHANH K CHO

DD
7 tháng 1 2021

Nếu cả \(p,q\)đều là số lẻ thì \(pq+11\)là số chẵn nên không thể là số nguyên tố. 

Nếu \(p=2\):

\(q+14\)\(2q+11\)đều là số nguyên tố. 

Với \(q=3\)thỏa mãn. 

Với \(q>3\)thì \(q=3n+1\)hoặc \(q=3n+2\).

\(q=3n+1\)thì \(q+14=3n+15⋮3\).

\(q=3n+2\)thì \(2q+11=2\left(3n+2\right)+11=6n+15⋮3\).

Nếu \(q=2\):

\(7p+2\)\(2p+11\)đều là số nguyên tố. 

Xét các trường hợp của \(p\)tương tự trường hợp \(p=2\).

Kết luận: có các trường hợp thỏa mãn là \(\left(p,q\right)\in\left\{\left(2,3\right),\left(3,2\right)\right\}\)

25 tháng 12 2018

À chờ mình xíu

25 tháng 12 2018

Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2 

Nếu p = 2 

=> 7p + q = 7.2 + q = 14 + q 

q sẽ có 3 dạng là : 3k ; 3k+1;3k+2 

Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố

       q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố 

       q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố 

Vậy q = 3 ; p = 2 

VÀ TH q = 2 bn tự xét nha 

10 tháng 1 2024

Vi pq + 11 là số nguyên tố => Lẻ và 11 là số lẻ => pq chẵn => p hoặc q bằng 2 

Nếu p = 2 

=> 7p + q = 7.2 + q = 14 + q 

q sẽ có 3 dạng là : 3k ; 3k+1;3k+2 

Nếu q = 3k => p = 3 => 7p + q = 17 ; pq + 11 = 17 là số nguyên tố

       q=3k + 1 => 7p + q = 3k + 15 chia hết cho 3 là số nguyên tố 

       q = 3k + 2 =>pq + 11 = 6k + 15 chia hết cho 3 là số nguyên tố 

Vậy q = 3 ; p = 2 

VÀ TH q = 2 bn tự xét nha