\(p^2+13\)cũng là số nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2015

Nếu p = 2 thì p2 + 13 = 22 + 13 = 4 + 13 = 17 là số nguyên tố.

Nếu p > 2 thì p = 2k + 1 (k\(\in\)N)

=> p2 + 13 = (2k + 1)2 + 13 = 4k2 + 2.2k + 1 + 13 = 4k2 + 4k + 14 chia hết cho 2 và lớn hơn 2 => p2   + 13 là hợp số (loại)

Vậy p = 2

xét P=2=>P2+13=17(chọn)

xét P>2=>P=2k+1=>P2=2q+1

=>P2+13=2q+1+13=2q+14=2(q+7) chia hết cho 2(loại)

vậy P=2

11 tháng 12 2016

P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8 

( vì k(k+1) chia hết cho 2 với mọi k thuộc n) 

P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2

. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N

. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N

(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24

26 tháng 3 2017

cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24 
các bạn giải hộ mình vs

+, p=2 :

\(\Rightarrow p^2+44=4+44=48\) (hợp số loại)

+, p=3 :

\(\Rightarrow p^2+44=9+44=53\)(số nguyên tố thỏa mãn)

+, \(p>3\):

\(\Rightarrow\)p có dạng 3k+1;3k+2:                                       \(\left(k\inℕ^∗\right)\)

+,p=3k+1:

\(\Rightarrow\left(3k+1\right)^2+44=3n+1+44=3n+45⋮3\)(hợp số loại)

+, p=3k+2:

\(\Rightarrow\left(3k+2\right)^2+44=3m+1+44=3m+45⋮3\)(hợp số loại)                  \(\left(m;n\inℕ^∗\right)\)

Vậy p=3

8 tháng 4 2018

Bạn tham khảo ở đây :

Tìm số nguyên tố p sao cho 2^p + p^2 cũng là số nguyên tố.? | Yahoo Hỏi & Đáp

tham khảo

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

30 tháng 5 2018

Bài 1: ba số tự nhiên lẻ liên tiếp đều là số nguyên tố là 3;5;7

30 tháng 5 2018

Bài 1 :

Gọi 3 số đó là p ; p + 2 ; p + 4

+ Nếu p = 2 thì p + 2 = 2 + 2 = 4 là hợp số

+ Nếu p = 3 thì p + 2 = 3 + 2 = 5 ; p + 4 = 3 + 4 = 7 đều là số ng tố

Với p là số nguyên tố lớn hơn 3  thì p chỉ có dạng 3k + 1 hoặc 3k + 2

+ Nếu p = 3k + 2 thì p + 4 là hợp số ( loại )

+ Nếu p = 3k + 1 thì p + 2 là hợp số ( loại )

Vậy ba số ng tố đó là : 3 ; 5 ; 7

24 tháng 10 2017

Với p bằng 2 suy ra p+4 bằng 6 là hợp số (loại)

Với p bằng 3 suy ra p+4 bằng 7 là SNT

                                p+8 bằng 11 là SNT (thỏa mãn)

Với p > 3 suy ra p có dạng 3k+1 hoặc 3k+2 (k thuộc N)

Nếu p bằng 3k+1 suy ra p+8 bằng 3k+1+8 bằng 3k+9 chia hết cho 3

Suy ra p+8 là hợp số (loại)

Nếu p bằng 3k+2 suy ra p+4 bằng 3k+2+4 bằng 3k+6 chia hết cho 3

Suy ra p+4 là hợp số (loại)

Kết luận: Vậy p bằng 3.

3 tháng 3 2020

Bài 2 :

Tham khảo nha bạn !

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

3 tháng 3 2020

Vì a,b,c có vai trò như nhau. Giả sử a<b<c

Khi đó ab+bc+ca =< 3bc

=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)

Với a=2, ta có:

2bc < 2b+2c-bc =< 4c 

=> b<4 => b=2 hoặc b=3

Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì

Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5

Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố

29 tháng 3 2016

vì p là sntố

+,p=2 thì 2^2+2^2=8 là hợp số

+,p=