K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

Xét trường hợp p=2=>p+20=22(loại vì ko phải snt)

Xét trường hợp p=3=>p+20=23;p+28=31 (nhận)

Xét p>3 ta có 1 trong 2 dạng 3k+1 và 3k-1

+) Với p=3k+1=>p+28 =3k+1+28=3k+29 chia hết cho 3

+) Với p=3k-1=>p+20 = 3k-1+20=3k+19 chia hết cho 3

Vậy p=3 thì p+20 và p+28 là số nguyên tố.

k mình nha^^

13 tháng 3 2017

số nguyên tố p cần tìm là: 3

17 tháng 8 2017

4n+3 và 2n+3 là 2 số nguyên tố cùng nhau \(\Leftrightarrow\)n=1

9 tháng 7 2016

 1/ *>p=2 thì p^2+2=6(loại vì 6 ko là số nghuyên tố) 
*>p=3thì p^2+2=11(chọn vì 11 là số nghuyên tố) 
=>p^3+2=3^3+2=29 (là số nghuyên tố) 
*>p>3 
vì p là số nguyên tố =>p ko chia hết cho 3 (1) 
p thuộc Z =>p^2 là số chính phương (2) 
từ (1),(2)=>p^2 chia 3 dư 1 
=>p^2+2 chia hết cho 3 (3) 
mặt khác p>3 
=>p^2>9 
=>p^2+2>11 (4) 
từ (3),(4)=>p^2+2 ko là số nguyên tố (trái với đề bài) 

11 tháng 7 2016

* p = 2 : p2 + 8 = 12 là hợp số ( loại)

* p = 3 : p2 + 8 = 17 ; p2 + 2= 11 là số nguyên tố.

* p > 3 \(\Rightarrow\)p = 3k + 1 hoặc p = 3k +2

\(\Rightarrow p^2\)chia 3 dư 1.

Đặt \(p^2=3h+1\)

\(\Rightarrow\)p2 + 8 = 3h + 9 = 3 ( h + 3 ) là hợp số.

Do đó p = 3 và p2 + 2 là số nguyên tố.

11 tháng 7 2016

Ta có : 

\(p^2+8=\left(p^2-1\right)+9=\left(p-1\right)\left(p+1\right)+9\)

Nhận xét : \(p^2+8>3\) với mọi p là số nguyên tố 

Xét ba số tự nhiên liên tiếp : p-1 , p , p+1 ắt sẽ tìm được một số chia hết cho 3 . 

Số đó không thể là (p-1) , (p+1) vì giả sử ngược lại, ta có \(p^2+8\) chia hết cho 3 , mà \(p^2+8>3\)

=> \(p^2+8\)không là số nguyên tố - trái với giả thiết 

Do đó ta phải có p chia hết cho 3 . Mà p là số nguyên tố nên p = 3

Vậy : \(p^2+2=3^2+2=11\)là số nguyên tố (đpcm)