K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

xét p=2 => p+10=12 chia hết cho 2(ktm)

xét p=3 => p+10=13, p+20=23(tm)

xét p=3k+1(k thuộc N*)

=> p+20=3k+1+20=3k+21 chia hết cho 3(KTM)

xét p=3k+2(k thuộc N*)

=> p+10=3k+2+10=3k+12 chia hết cho 3(KTM)

vậy p=3

13 tháng 6 2018

thanks you very much!!!!!!!!!!!!!!!!!!

8 tháng 11 2018

a, +, p = 2

=> p + 2 = 2 + 2 = 4 ( là hợp số )      => loại

    +, p = 3

=> p + 2 = 3+ 2 = 5        ( là số nguyên tố )

     p + 10 = 3+ 10 = 13      ( là số nguyên tố )

     +, p > 3 => p có dạng 3k+1 hoặc 3k+2

TH1: p = 3k+1

=> p + 2 = 3k + 1 + 2 = 3k + 3 \(⋮\)3 ( là hợp số )             => loại

 TH2: p= 3k + 2

=> p + 10  = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số )      => loại

           Vậy p = 3

b, +, p = 2

=> p + 10 = 2 + 10 = 12 ( là hợp số )      => loại

    +, p = 3

=> p + 10 = 3+ 10 = 13        ( là số nguyên tố )

     p + 20 = 3+ 20 = 23      ( là số nguyên tố )

     +, p > 3 => p có dạng 3k+1 hoặc 3k+2

TH1: p = 3k+1

=> p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3 ( là hợp số )             => loại

 TH2: p= 3k + 2

=> p + 10  = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số )      => loại

          Vậy p = 3

21 tháng 4 2016

do p là số nguyên tố =>p>=2 
xét p=2 => p+10 =12 (không là số nguyên tố) 
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố) 
=> p=3 thỏa mãn đề bài 
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1 
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý 
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố 
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài 
p=3 là số nguyên tố duy nhất thỏa mãn đề bài , duyệt nha

21 tháng 4 2016

Câu này đã có nhiều trên OLM rồi, bạn xem trong câu hỏi tương tự.

Bài này có 3 số, khi chia cho 3 thì 3 số cho ba số dư khác nhau (vì p + 10 = p + 9 + 1; p + 14 = p + 12 + 2). Do vậy mà chúng đều là số nguyên tố khi p = 3 là số chia hết cho 3 duy nhất là số nguyên tố.

29 tháng 10 2018

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

22 tháng 11 2015

a)

 p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3 

22 tháng 11 2015

b)

p=2=>6+p=6+2=8 là hợp số=>loại p = 2

p=3

=>6+p=6+3=9 là hợp số =? loại p=3

p=5

=>p+2=5+2=7

p+6=5+6=11

p+8=5+8=13

p+14=5+14=19 

đều là snt => p =5 thỏa mãn

nếu p>5

=>p có dạng :

p=5k+1

=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1

p=5k+2

=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2

Vậy p=5

1 tháng 2 2016

vào chtt xem cách làm tương tự 

1 tháng 2 2016

chắc p=5 đó bạn