\(A=1+p+p^2+p^3+p^4\) là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

 Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

 Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

29 tháng 6 2018

a, M=3+32+...+32016=3(1+3+...+32015) chia hết cho 3 (1)

CÓ: M=3+32+...+32016=3+32(1+...+32014)=3+9(1+...+32014)

Vì 9(1+...+32014) chia hết cho 9, 3 không chia hết cho 9

=>M=3+9(1+...+32014) không chia hết cho 9 (2)

Từ (1) và (2) => M không phải là số chính phương

b, M=3+32+...+32016

=(3+32+33+34)+....+(32013+32014+32015+32016)

=3(1+3+32+33)+...+32013(1+3+32+33)

=3.40+...+32013.40

=40(3+...+32013) chia hết cho 40

=>M có chữ số tận cùng là 0

=>M không phải là số nguyên tố

c, Vì M chia hết cho 3 => 6M chia hết cho 3

Mà 9 chia hết cho 3 => 6M+9 chia hết cho 3 (3)

Ta có: M=3(1+3+...+32015)

=>6M=9.2(1+3+...+32015

=> 6M chia hết cho 9

Mà 9 chia hết cho 9

=> 6M+9 chia hết cho 9 (4)

Từ (3) và (4) => 6M+9 là số chính phương

d, Ta có: M=3+32+...+32016

=>3M=32+33+...+32017

=>3M-M=(32+33+...+32017)-(3+32+...+32016)

=>2M=32017-3

=>6M+9=3(32017-3)+9=3(32017-3+3)=3.32017=32018=3x+5

=>x+5=2018

=>x=2013

1 tháng 1 2019

\(A=\frac{5x+7}{x+3}=\frac{5x+15-8}{x+3}=\frac{5\left(x+3\right)-8}{x+3}\)

\(A=5-\frac{8}{x+3}\)

Để A là số tự nhiên => \(\frac{8}{x+3}\)là số tự nhiên 

\(\Rightarrow x+3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\pm8\right\}\)

bn tự lập bảng nha