+) Với p = 2 =>p + 6 = 2 + 6 = 8 là hợp số => loại
+) Với p = 3 => p + 12 = 3 + 12 = 15 là hợp số => loại
+) Với p = 5 => p + 6 = 11 ; p + 8 = 13 ; p + 12 = 17 ; p + 14 = 19 đều là các số nguyên tố => chọn
+) Với p > 5 và p nguyên tố => p có 1 trong 4 dạng : 5k + 1 ; 5k + 2 ; 5k + 3 ; 5k + 4 ( k \(\inℕ^∗\))
Nếu p = 5k + 1 => p + 14 = 5k + 1 + 14 = 5k + 15 là hợp số => loại
Nếu p = 5k + 2 => p + 8 = 5k + 2 + 8 = 5k + 10 là hợp số => loại
Nếu p = 5k + 3 => p + 12 = 5k + 3 + 12 = 5k + 15 là hợp số => loại
Nếu p = 5k + 4 => p + 6 = 5k + 4 + 6 = 5k + 10 là hợp số => loại
Vậy : p = 5
P/s : vì đề yêu cầu : Tìm số nguyên tố p để p + 6 , p + 8 , p + 12 , p + 14 đều là các số nguyên tố nên chỉ cần chỉ ra 1 cái là hợp số là được,không cần viết ra cả nhé!
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Vì p là số nguyên tố
+ Nếu p = 2 thì p + 6 = 2 + 6 = 8 \(⋮\)2 và 8 > 2 là hợp số ( loại )
+ Nếu p = 3 thì p + 12 = 15 \(⋮\)3 và 15 > 3 là hợp số ( loại )
+ Nếu p = 5 thì các số p + 6 , p + 8 , p + 12 , p + 14 đều là số nguyên tố ( chọn )
Với p là số nguyên tố lớn hơn 5 p chỉ có 1 trọng 4 dạng 5k + 1 , 5k + 2 , 5k + 3 , 5k + 4 ( k thuộc N* )
+ Nếu p = 5k + 1 thì p + 14 = 5k + 15 = 5 . ( k + 3 ) \(⋮\)5 và lớn hơn 5 là hợp số ( loại )
Làm tương tự với 3 số 5k + 2 , 5k + 3 , 5k + 4 thấy không có số nào thỏa mãn
Vậy p = 5 thì ....
+) Với p = 2 =>p + 6 = 2 + 6 = 8 là hợp số => loại
+) Với p = 3 => p + 12 = 3 + 12 = 15 là hợp số => loại
+) Với p = 5 => p + 6 = 11 ; p + 8 = 13 ; p + 12 = 17 ; p + 14 = 19 đều là các số nguyên tố => chọn
+) Với p > 5 và p nguyên tố => p có 1 trong 4 dạng : 5k + 1 ; 5k + 2 ; 5k + 3 ; 5k + 4 ( k \(\inℕ^∗\))
Nếu p = 5k + 1 => p + 14 = 5k + 1 + 14 = 5k + 15 là hợp số => loại
Nếu p = 5k + 2 => p + 8 = 5k + 2 + 8 = 5k + 10 là hợp số => loại
Nếu p = 5k + 3 => p + 12 = 5k + 3 + 12 = 5k + 15 là hợp số => loại
Nếu p = 5k + 4 => p + 6 = 5k + 4 + 6 = 5k + 10 là hợp số => loại
Vậy : p = 5
P/s : vì đề yêu cầu : Tìm số nguyên tố p để p + 6 , p + 8 , p + 12 , p + 14 đều là các số nguyên tố nên chỉ cần chỉ ra 1 cái là hợp số là được,không cần viết ra cả nhé!