K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

A, Mọi số khi chia cho 3 chỉ xảy ra trong ba trường hợp: + chia hết cho 3

                                                                                   + chia 3 dư 1

                                                                                   + chia 3 dư 2

Vậy số p chỉ có một trong ba dạng :p=3k ; p=3k+1 ; p=3k +2 ( k thuộc N )

Nếu p= 3k thì p=3 ( vì phải là số nguyên tố )

                          Khi đó p +34= 3+34=37 ( là số nguyên tố )

                                    p+50= 3+50= 53 ( là số nguyên tố )

Nếu p= 3k+1 thì p+34= ( 3k+1 ) +34=3k+35 chia hết cho 5 và lớn hơn 1 nên là hợp số ( ko thỏa mãn )

Nếu p= 3k +2 thì p+50= ( 3k +2 ) + 50= 3k + 52 chia hết cho 2 và lớn hơn 1 nên ( ko thỏa mãn )

Vậy p=3 là thỏa mãn

13 tháng 11 2016

Giúp mình với. Mình sẽ k cho

5 tháng 1 2023

4 ko phải số nguyên tố bn ơi

5 tháng 1 2023

câu hỏi là p + 1 là số nguyên tố

thì p = 4 đ'g r còn gi |  vì 4+1 =5 | 5 là snt

AH
Akai Haruma
Giáo viên
15 tháng 8 2017

Lời giải:

\(\bullet\)Nếu $p=2$ thì \(10p+1\not\in \mathbb{P}\) (loại)

\(\bullet\) Nếu \(p=3\Rightarrow 10p+1\in\mathbb{P}\). Cùng lúc đó \(5p+1=16\) là hợp số.

\(\bullet\) Nếu \(p>3\Rightarrow p\not\vdots 3\). Xét 2 TH:

TH1: \(p=3k+1\)

Khi đó \(5p+1=5(3k+1)+1=15k+6\vdots 3\) . Mà \(15k+6>3\) nên là hợp số.

TH2: \(p=3k+2\Rightarrow 10p+1=30k+21\vdots 3\), lớn hơn $3$ nên không thể là số nguyên tố (trái với đkđb)

Từ các trường hợp trên, ta có đpcm.

22 tháng 10 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p + 1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
Mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p + 1 chia hết cho 2.3 = 6 
=> 5p + 1 là hợp số

 

22 tháng 10 2016

nhưng đây là có p >3

26 tháng 2 2017

tớ chỉ biết làm phần d thôi

            Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2

        +) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5

                                                  p+4=3+4=7 là số nguyên tố (chọn)

        +) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)

        +) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)

                            Vậy số cần tìm là 3

26 tháng 2 2017

Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé

27 tháng 7 2015

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho (2 . 3) = 6 (đpcm) 

p là số nguyên tố >3=>p=3k+1;3k+2

xét p=3k+2=>10p+1=10(3k+2)+1

=3.10k+20+1=3.10k+21=3(10k+7) chia hết cho 3

=>10p+1 là hợp số(trái giả thuyết)

=>p=3k+1

=>5p+1=5(3k+1)+1=3.5k+5+1=3.5k+6=3(5k+2) chia hết cho 3             (1)

p>3=>p=2q+1

=>5p+1=5(2q+1)+1=10q+5+1=10q+6=2(5q+3) chia hết cho 2               (2)

từ (1);(2)=>5p+1 chia hết cho 2;3

vì (2;3)=1=>5p+1 chia hết cho 6

=>đpcm

30 tháng 11 2019

a)+) Với p = 2 => p + 10 = 2 + 10 = 12

Vì 12 là hợp số 

=> p + 10 là hợp số

=> p = 2  (loại)  (1)

+) Với p = 3 => p + 10 = 3 + 10 = 13 và  p  + 14 =3 + 14 = 17 

Vì 13 và 17 đều là các số nguyên tố

=> p = 3  ( thỏa mãn )  (2)

Với p>3 => p có dạng : 3k +1 ; 3k+2  (k thuộc N)

+) Với p = 3k + 1 => p + 14 = 3k+15 chia hết cho 3

Mà p + 14 là hợp số => 3k + 15 là hợp số 

=> p =3k +1  (loại)  (3)

+) Với p =3k + 2 => p+ 10 =3k +12 chia hết cho 3

Mà p + 10 >3 => 3k+12 >3 => 3k+12 là hợp số

=> p=3k +2  (loại)

Từ (1),(2),(3),(4)

=>p=3

Vậy p=3

30 tháng 11 2019

Dòng thứ 8 là k thuộc N*

24 tháng 7 2016

 1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3 
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố 
đặt k = 3n+r (với r = 0, 1, 2) 
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r 
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1 
nên ta phải có r = 0 
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2 
=> r = 0 
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3 
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6 

3) p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Tích tớ nha

24 tháng 7 2016

1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3 
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố 
đặt k = 3n+r (với r = 0, 1, 2) 
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r 
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1 
nên ta phải có r = 0 
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2 
=> r = 0 
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3 
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6 

3) p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

Tích nha

6 tháng 8 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6

Chúc bn hok tốt

6 tháng 8 2016

+ Do p nguyên tố > 3 => p chia 3 dư 1 hoặc 2

Nếu p chia 3 dư 2 thì p = 3k + 2 (k thuộc N*) => 10p + 1 = 10.(3k + 2) + 1 = 30k + 20 + 1 = 30k + 21 chia hết cho 3, là hợp số, loại

=> p = 3k + 1

=> 5p + 1 = 5.(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 chia hết cho 3 (1)

+ Do p nguyên tố > 3 => p lẻ => 5p lẻ => 5p + 1 chẵn => 5p + 1 chia hết cho 2 (2)

Từ (1) và (2); do (3;2)=1 => 5p + 1 chia hết cho 6 (đpcm)

Bài này là chứng minh chứ ko fai tìm nha bn

3 tháng 8 2015

Xét 3 số tự nhiên liên tiếp: 10.p;10+1;2.(5p+1)

=> Có 1 số chia hết cho 3; một số chia hết cho 2

Vì p và 10p+1 là 2 sồ nguyên tố (p>3)

=>p và 10p+1 ko chia hết cho 3 và 2. Vì 10 và 3 nguyên tố cùng nhau; 10 chia hết cho 2

=>10p và 10p+1 ko chia hết cho 3; 10p chia hết cho 2; 10p+1 ko chia hết cho 2

=>10p+2 chia hết cho 3. Vì 2 chia hết cho 2=>10p+2 chia hết cho 2

Vì 2 và 3 nguyên tố cùng nhau =>5p+1 chia hết cho cả 3 và 2

Vậy 5p+1 chia hết cho 6 (đpcm)

nhấn đúng nha

22 tháng 3 2016

p nguyên tố > 3 

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
Mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6