Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abcd ta có:
d=3b ; c=8a và a+b+c+d chia hết cho 9.
Vì a khác 0 và c<10 nên a chỉ có thể bằng 1 và c bằng 8.
a+b+c+d = b+d+9 chia hết cho 9
=> b+d chia hết cho 9.
+ Nếu b+d = 0 thì thõa mãn, ta lập được số 1080.
+ Nếu b+d = 9 thì b+3b=9=> 4b=9 => Không tìm được b,d
+ Nếu b+d = 18 thì 4b=18 => Không tìm được b,d\
HT
a) Các số nguyên tố lớn hơn 5 sẽ có tận cùng là: 1, 3, 7.
Như vậy trong 5 số nguyên tố lớn hơn 5 sẽ có ít nhất hai có cùng chữ số tận cùng, suy ra hiệu hai số này chia hết cho 10.
b) Gọi số cần tìm là \(\overline{ab}\) (a,b là số nguyên tố).
Theo bài ra ta có: \(\overline{ab}.a.b=\overline{aaa}\) \(\Leftrightarrow\overline{ab}.a.b=b.111\) \(\Leftrightarrow\overline{ab}.a=3.37\).
Suy ra \(\hept{\begin{cases}a=3\\b=7\end{cases}}\).
Goi so chu so cua 2^50 la a,so chu so cua 5^50 la b.Khi viet hai so nay lien nhau ta duoc 1 so co a+b chu so. Ta co 10^a-1x10^b-1<2^50x5^50<10^ax10^b=>10^a-1+b-1<10^50<10^a+b=>10^a+b-2<10^50<10^a+b=>a+b-2<50<a+b=>a+b-2<50=>a+b<52=>50<a+b<52=>a+b=51. Vay hai so 2^50 va 5^50 viet lien nhau ta duoc mot so co 51 chu so
gọi số cần tìm là ab [a,b là số nguyên tố]
theo bài ra ta có : ab . a.b = aaa \(\Leftrightarrow\)ab .a.b = b.111\(\Leftrightarrow\)ab .a = 3,37
suy ra\(\hept{\begin{cases}a=3\\b=7\end{cases}}\)