Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
Xin lỗi tớ chỉ trả lời đucợ phần a mà cx ko biết có đúng không nhưng tớ học dạng này rồi
a)
+ Nếu p = 2 thì p + 10 = 12 là hợp số
p + 20 = 22 là hợp số
\(\Rightarrow\)Loại
+ Nếu p = 3 thì p + 10 = 13 là Số nguyên tố
p + 20 = 23 là số nguyên tố
\(\Rightarrow\) Chọn
+ Nếu p > 3 thì p có dạng 3k + 1; 3k +2 ( k \(\in\)N* )
- Với p = 3k + 1 thì p + 20 = 3k +1 + 20 = 3k+21. Mà 21 \(⋮\)3 \(\Rightarrow\)21 là hợp số
- Với p = 3k +2 thì p + 10 = 3k + 2 + 10 = 3k + 12. Mà 12 \(⋮\)2,6,3,4 \(\Rightarrow\)12 là hợp số
\(\Rightarrow\) Loại
Vậy, p = 3
a, Ta có: p = 2 => p + 10 = 12 là hợp số
p = 3 => p + 10 = 13
p + 20 = 23
Vậy p = 3 thỏa mãn yêu cầu
Giả sử p > 3 thì p sẽ có dạng:
p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3
=> p + 20 là hợp số
Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3
=> p + 10 là hợp số
Do đó: với p = 3 thỏa mãn yêu cầu đề bài
b, Ta có: p = 2 => p + 2 = 4 là hợp số
p = 3 => p + 6 = 9 là hợp số
p = 5 => p + 2 = 7
p + 6 = 11
p + 8 = 13
p + 14 = 19
Vậy p = 5 thỏa mãn
Giả sử p > 5 thì p sẽ có dạng:
p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4
Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5
=> p + 14 là hợp số
Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5
=> p + 8 là hợp số
Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5
=> p + 2 là hợp số
Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5
=> p + 6 là hợp số
Do đó: với p = 5 thỏa mãn yêu cầu bài toán
Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3
b) Có 4n+5 chia hết cho 2n+1
=>2(n+1)+3 chia hết cho 2n+1
=>2n+1 thuộc Ư(3)={1;3}
Với 2n+1=1 =>n=0
Với 2n+1=3 =>n=1
Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha
a, p là số nguyên tố
+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số
=> p = 2 (loại)
+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P
p + 20 = 3 + 20 = 23 thuộc P
=> p = 3 (nhận)
+ p là số nguyên tố và p > 3
=> p = 3k + 1 hoặc p = 3k + 2
xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số
=> p = 3k + 1 loaị
+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số
=> p = 3k + 2 loại
vậy p = 3
b, 4n + 5 chia hết cho 2n + 1
=> 4n + 2 + 3 chia hết cho 2n + 1
=> 2(2n + 1) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
xét ư(3) là ok nhé
câu 1 : do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
Bài 1:a)Vì p là số nguyên tố nên p=2,3,5,7,...
-Với p=2 thì p+10=12(hợp số)\(\rightarrow\)loại
-Với p=3 thì p+10=13, p+20=23 (số nguyên tố)\(\rightarrow\)chọn
-Với p>3 và p là số nguyên tố nên p không chia hết cho 3;p+10,p+20>3 nên:
Nếu p=3k+1 thì p+20=3k+21\(⋮\)3(hợp số)\(\rightarrow\)loại
Nếu p=3k+2 thì p+10=3k+12\(⋮\)3(hợp số)\(\rightarrow\)loại
Vậy p=3 là giá trị cần tìm
Còn lại bạn cứ tiếp tục nhé