Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Số p có một trong ba dạng : 3k , 3k+1 , 3k+2 (k thuộc N*)
Nếu p = 3k thì p = 3 ( Vì p là số nguyên tố ) , khi đó p+2 = 5 , p+4 = 7 đều là số nguyên tố
Nếu p = 3k + 1 thì p + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3 nên p + 2 là hợp số ( loại )
Nếu p = 3k + 2 thì p + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3 nên p + 4 là hợp số ( loại )
Vậy p = 3
p là 2
2 là số nguyên tố
2 + 3 = 5 (số nguyên tố)
Vậy p= 2
vì p+3 là 1 số nguyên tố
=>p=2 vì 1 số lẻ+1 số chẵn = 1 số lẻ mà các số nguyên tố chỉ có 2 chẵn
mà 2+3=5[3 và 5 đều là số nguyên tố] nên p=2
a là số nguyên tố
Với a=3 ta có: a+2=3+2=5, a+10=3+10=13, a+14=3+14=17 là các số nguyên tố (TM).
Với a\(\ne\)3, a có dạng 3k+1 và 3k+2 (k lớn hơn 1)
Th1: a=3k+1\(\Rightarrow\)a+2=3k+1+2=3k+3\(⋮\)3 (loại)
Th 2:a=3k+2\(\Rightarrow\)a+10=3k+2+10=3k+12\(⋮\)3 (loại)
Vậy .......................
a)Nếu p= 3k mà p là số nguyên tố nên=> p=3
khi đó : p+2= 5, p+10=13( tẤT CẢ đều là số nguyên tố)
=> p=3(1)
nếu p> 3 thì p có dạng 3k+1, 3k+2
Nếu p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 và >3=>p+2 là hợp số (loại)
Nếu p=3k+2 thì P+10= 3k+2+10=3k+12 chia hết cho 3 và> 3=> p+10 là hợp số (loại)(2)
Từ (1) và (2) => p=3
a) Xét:
\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)
+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so
Vay p=2
b) Xét:'
\(+p=2\Rightarrow p+8=10\left(ktm\right)\)
\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)
\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)
\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)
\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)
Vay p=3
a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.
Xét p = 2 => 3.2 + 5 = 11 (nhận)
b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.
=> p = 3
đem p chia cho 3 xảy ra 3 khả năng về số dư : dư 0 hoặc dư 1 hoặc dư 2
+) nếu p chia cho 3 dư 0 \(\Rightarrow p⋮3\) mà p là số nguyên tố \(\Rightarrow p=3\)
khi đó \(p+10=3+10=13\) ( thỏa mãn )
\(p+14=3+14=17\) ( thỏa mãn )
+ ) nếu p chia cho 3 dư 1 \(\Rightarrow p=3k+1\) ( k \(\in\) N* )
khi đó \(p+15=3k+1+14=3k+15=3\left(k+3\right)⋮3\)
mà \(p+14>3\Rightarrow p+14\) là hợp số ( loại )
+) nếu p chia cho 3 dư 2 \(\Rightarrow p=3k+2\) ( k \(\in\) N* )
khi đó \(p+10=3k+2+10=3k+12=3\left(k+4\right)⋮3\)
mà \(p+10>3\Rightarrow p+10\) là hợp số ( loại )
vậy p = 3
chúc bạn học giỏi ^^
Xét p=2 suy ra p+10=12 chia hết cho 2
suy ra p+10 là hợp số (loại)
Xét p=3 suy ra p+10 và p+14 lần lượt bằng 13 và 17 là các số nguyên tố (thỏa mãn)
Xét p>3 suy ra p=3k+1:3k+2
Xét p=3k+1=p+14=3k+1+14=3k+15=3(k+5) chia hét cho 3
suy ra p+14 là hợp số (loại)
Xét p=3k+2 suy ra p+10=3k+2+12=3(k+4) chia hết cho 3
suy ra p+10 là hợp số (loại)
vậyp=3