K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2020

Dễ dàng nhận ra cả 2 số đều dương, đặt \(\frac{5n^2+n+1}{n^2-n+1}=k\in Z^+\)

\(\Leftrightarrow5n^2+n+1=kn^2-kn+k\)

\(\Leftrightarrow\left(k-5\right)n^2-\left(k+1\right)n+k-1=0\)

\(k=5\) ko có n nguyên thỏa mãn

\(k\ne5\Rightarrow\Delta=\left(k+1\right)^2-4\left(k-5\right)\left(k-1\right)\)

\(=-3k^2+26k-19\) \(\Rightarrow0< k< 8\)

Mặt khác do k nguyên; n nguyên \(\Rightarrow-3n^2+26k-19\) phải là số chính phương

Thay các giá trị \(k\in\left(0;8\right)\) vào thấy \(k=\left\{1;7\right\}\) thỏa mãn (loại 5)

- Với \(k=1\Rightarrow n=0\)

- Với \(k=7\Rightarrow n=\left\{1;3\right\}\)

26 tháng 7 2018

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5

DD
13 tháng 10 2021

Ta có: \(2000=2^4.5^3\).

Suy ra \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮125\)

mà \(n,n+1,n+2,n+3\)là bốn số tự nhiên liên tiếp nên có tối đa một số trong bốn số đó chia hết cho \(5\), khi đó số đó cũng phải chia hết cho \(125\)

Với \(n+3=125\Leftrightarrow n=122\)thử trực tiếp không thỏa.

Với \(n+2=125\Leftrightarrow n=123\)thử trực tiếp không thỏa.

Với \(n+1=125\Leftrightarrow n=124\)thử trực tiếp không thỏa.

Với \(n=125\)thử lại thỏa mãn. 

Vậy \(n=125\)là giá trị cần tìm. 

13 tháng 10 2021

em cảm ơn ạ

31 tháng 7 2020

Bg

Ta có: n2 + 2n + 6 \(⋮\)n + 4     (n thuộc \(ℤ\))

=> 4n + 6 \(⋮\)n + 4

=> 4.(n + 4) - 10 \(⋮\)n + 4

Mà 4.(n + 4) \(⋮\)n + 4

=> 10 \(⋮\)n + 4

=> n + 4 thuộc Ư(10)

Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}

Lập bảng: 

n + 4 =1-12-25-510-10
n =

-3

-5-2-61-96-14

Vậy n = {-3; -5; ; -2; -6; 1; -9; 6; -14}

31 tháng 7 2020

Ta có n2 + 2n + 6 = n2 + 8n + 16 - 6n - 24 + 14

                             = (n + 4)2 - (n + 4) + 14

                             = (n + 4)(n + 4 - 1) + 14

Vì (n + 4)(n + 4 - 1) \(⋮\)n + 4 

=> 14 \(⋮n+4\Rightarrow n+4\inƯ\left(14\right)\)(Vì n nguyên)

=> \(n+4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)

=> \(n\in\left\{-3;-5;-2;-6;3;-11;10;-18\right\}\)

\(⋮\)

1 tháng 9 2017

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

1 tháng 9 2017

Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.