K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Để \(\frac{10}{2n-3}\)là số nguyên thì 10 \(⋮\)2n-3

=> 2n -3 thuộc Ư(10) ={ 1; 2; 5; 10; -1; -2; -5; -10}

Vì 2n-3 là số lẻ nên 2n-3 \(\in\){1; -1; 5; -5}

=> 2n \(\in\){ 4; 2; 8; -2}

=> n \(\in\){ 2; 1; 4; -1}

Vậy...

a)Để \(\frac{10}{2n+3}\)là một số nguyên thì \(10⋮2n+3\)

=>\(2n+3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

+)Ta có bảng:

2n+3-11-22-55-1010
n-2\(\in Z\)-1\(\in Z\)-2,5\(\notin Z\)-0,5\(\notin Z\)-4\(\in Z\)1\(\in Z\)-6,5\(\notin Z\)3,5\(\notin Z\)

Vậy n\(\in\){-2;-1;-4;1}

Chúc bn học tốt