Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\frac{n^2+1}{n^2-3}\text{ là số nguyên }\Leftrightarrow n^2+1⋮n^2-3\)
\(\Leftrightarrow n^2-3+6⋮n^2-3\)
\(\text{Vì }n^2-3⋮n^2-3\text{ nên }6⋮n^2-3\)
\(\Leftrightarrow n^2-3\inƯ\left(6\right)\)
\(\Leftrightarrow n^2-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Leftrightarrow n^2\in\left\{4;2;5;1;6;0;9;3\right\}\)
\(\Leftrightarrow n\in\left\{2;0;3\right\}\)
\(\text{Vậy }F\text{ là số nguyên }\Leftrightarrow n\in\left\{2;0;3\right\}\)
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
thuc hien phep chia ta co so du la -1
suy ra-1 chia hết cho n-1
hay n-1 là ư(-1)
n-1=1 nên n=2
n-1=-1 nên n=1
vay n=2 hoac -1
Để đây là số nguyên thì \(n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{2;0;3;-1\right\}\)
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
\(\dfrac{2n}{n^2+1}\) nguyên thì 2n chia hết cho n^2+1
=>4n^2chia hết cho n^2+1
=>4n^2+4-4 chia hết cho n^2+1
=>\(n^2+1\in\left\{1;2;4\right\}\)
=>\(n\in\left\{0;1;-1\right\}\)