Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
Có \(2m+3⋮2m+3\)
\(\Rightarrow2\left(2m+3\right)⋮2m+3
\)
\(\Rightarrow4m+6⋮2m+3\)
\(\Rightarrow\left(4m+6\right)-\left(4m-1\right)⋮2m+3\)
\(\Rightarrow7⋮2m+3\Rightarrow2m+3\inƯ\left(7\right)=\left(\pm1;\pm7\right)\)
tự lập bảng xét dấu nốt đi
a,2n+1 chia hết cho n-5
2n-10+11 chia hết cho n-5
Suy ra n-5 thuộc Ư[11]
......................................................
tíc giùm mk nha
b1
ta có : n+4 = (n+1)+3
=>n+1+3 chia hết cho n+1
vì n+1 chia hết cho n+1
=>3 chia hết cho n+1
=> n+1 chia hết cho 3
=> n+1 thuộc Ư 3 =[1;3]
=> n+1=1 n+1=3
n =1-1 n =3-1
n =0 n =2
vậy n thuộc [0;2]
\(n^2+3n-5⋮n-2\)
\(\Leftrightarrow\left(n^2-4n+4\right)+7n-9⋮n-2\)
\(\Leftrightarrow\left(n-2\right)^2+7\left(n-2\right)+5⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
Vì n nguyên âm nên n - 2 < -2
Khi đó : n - 2 = -5
<=> n = -3
a, Bội (6) = {0; 6}
b, Số đối của: -4 = 4 ; 0 = 0
c, \(3^2+10:2=9+10:2=9+5=14\)
Câu 2:
\(\left(15-\left[3^{20}:3^{19}+2022^0\right]\right):11=\left(15-\left[3^{20-19}+1\right]\right):11=\left(15-\left[3^1+1\right]\right):11\)
\(=\left(15-4\right):11=11:11=1\)
Câu 3:
\(2x-7=39\)
\(2x=39+7\)
\(2x=46\)
\(x=46:2\)
\(x=23\)
1
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)
\(\text{⇒1 ⋮d}\)
\(\text{⇒d = 1}\)
Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)
Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.
\(M=1+3+3^2+...+3^{100}\)
\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)
\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)
mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(4:13\left(dư4\right)\)
\(\Leftrightarrow M:13\left(dư4\right)\)
bn nào làm cách làm đi, mk tịk cho