Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$1440=2^5.3^2.5$
Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$
Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$
Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$
Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$
Đường thẳng d đi qua A và có hệ số góc k nên có dạng y= k( x+ 1) hay
Kx- y+k=0 .
Phương trình hoành độ giao điểm của C và d là:
x 3 - 3 x 2 + 4 = k x + k ⇔ ( x + 1 ) ( x 2 - 4 x + 4 - k ) = 0
D cắt tại ba điểm phân biệt khi phương trình (*) có hai nghiệm phân biệt khác -1
⇔ ∆ ' > 0 g ( - 1 ) ≠ 0 ⇔ k > 0 k ≠ 9
Khi đó g( x) =0 khi x=2- k ; x = 2 + k Vậy các giao điểm của hai đồ thị lần lượt là
A ( - 1 ; 0 ) ; B ( 2 - k ; 3 k - k k ) ; C ( 2 + k ; 3 k + k k ) .
Tính được
B C = 2 k 1 + k 2 , d ( O , B C ) = d ( O , d ) = k 1 + k 2 .
Khi đó
S ∆ O B C = 1 2 . k k 2 + 1 . 2 k . k 2 + 1 = 1 ⇔ k k = 1 ⇔ k 3 = 1 ⇔ k = 1 .
Vậy k= 1 thỏa yêu cầu bài toán.
Chọn C.
\(y=\dfrac{2x\left(x-1\right)-2}{x-1}=2x-\dfrac{2}{x-1}\)
tiêm cận y=2 x chia đồ thị thành hai nhánh
=> k< 2 PA(D)
Chọn C