Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện đề bài ⇒(2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do a−b=p∈Pa−b=p∈P nên d=1d=1hoặc d=pd=p
Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)
⇒p=(x−y)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=a−b+12x=p+12=a−b+12 và y=a−b−12y=a−b−12
⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp
Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)
⇒(m−n)(m+n)=1→m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)
Theo đề bài thì ta có:
\(\frac{1}{a+b+1}=1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)
\(\ge2.\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{b+c+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{\left(a+b+1\right)\left(c+a+1\right)}1}\left(2\right)\\\frac{1}{c+a+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\left(3\right)\end{cases}}\)
Nhân (1), (2), (3) vế theo vế ta được
\(\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge8.\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{4}\)
\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
BĐT cần chứng minh tương đương:
\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)
\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)
\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)
Điều này đúng do:
\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)