\(3.4^a+3.4^b=4^{a+b}+8\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

Đè đúng không bạn ? 

3 tháng 4 2017

đúng đề rùi trả lời đi

12 tháng 7 2017

2, a-b=ab => a=ab+b => a=b(a+1)

thay a=b(a+1) vào a:b ta có: => b:b(a+1)=a+1

Theo bài ra ta có: a:b=a-b

=> a+1=a-b

=>-b=1

=> b=-1

Thay b=-1 vào a-b=ab ta có : a-(-1)=-a

=> a +1=-a

=>a=-1/2

Vậy a=-1/2. b=-1

9 tháng 10 2018

a=1.2+2.3+3.4+...+98.99

b=12+22+32+...+982

=> a-b=(1.2+2.3+3.4+...+98.99)-(12+22+32+...+982)

=1.2+2.3+3.4+...+98.99-12-22-32-...-982

=(1.2-12)+(2.3-22)+...+(98.99-982)

=1(2-1)+2(3-2)+...+98(99-98)

=1.1+2.1+...+98.1

=1+2+3+...+98

=\(\dfrac{98.\left(98+1\right)}{2}\)

=\(\dfrac{98.99}{2}\)

=4851

Vậy a-b=4851

Đúng thì tick nha,oaoa

9 tháng 4 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\Rightarrow\frac{B}{A}=\frac{2013\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2013\)là số nguyên

9 tháng 4 2018

\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{97.98}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow\frac{B}{A}=\frac{\frac{2013}{51}+\frac{2013}{52}+..+\frac{2013}{100}}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}\)

\(=\frac{2013\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}\)

\(=2013\in Z\)

4 tháng 11 2019

3)

a)\(\left(x+5\right)^3=-64\\ \Leftrightarrow\left(x+5\right)^3=\left(-4\right)^3\\ \Leftrightarrow x+5=-4\\ \Leftrightarrow x=-9\)

Vậy x = -9

b)\(\left(2x-3\right)^2=9\\ \Leftrightarrow\left(2x-3\right)^2=\left(\pm3\right)^2\\ \Rightarrow2x-3\in\left\{3;-3\right\}\Rightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Vậy...

c)\(x^2+1=82\\ \Leftrightarrow x^2=81\\ \Leftrightarrow x^2=\left(\pm9\right)^2\\ \Rightarrow x\in\left\{9;-9\right\}\)

Vậy...

d)\(x^2+\frac{7}{4}=\frac{23}{4}\\ \Leftrightarrow x^2=16\\ \Leftrightarrow x^2=\left(\pm4\right)^2\\ \Rightarrow x\in\left\{4;-4\right\}\)

Vậy...

e)\(\left(2x+3\right)^2=25\\ \Leftrightarrow\left(2x+3\right)^2=\left(\pm5\right)^2\\ \Rightarrow2x+3\in\left\{5;-5\right\}\\ \Rightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vậy...

4 tháng 11 2019

3)

a) \(\left(x+5\right)^3=-64\)

\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=\left(-4\right)-5\)

\(\Rightarrow x=-9\)

Vậy \(x=-9.\)

b) \(\left(2x-3\right)^2=9\)

\(\Rightarrow2x-3=\pm3.\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=0:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{3;0\right\}.\)

c) \(x^2+1=82\)

\(\Rightarrow x^2=82-1\)

\(\Rightarrow x^2=81\)

\(\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

Vậy \(x\in\left\{9;-9\right\}.\)

d) \(x^2+\frac{7}{4}=\frac{23}{4}\)

\(\Rightarrow x^2=\frac{23}{4}-\frac{7}{4}\)

\(\Rightarrow x^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{2;-2\right\}.\)

Chúc bạn học tốt!

10 tháng 7 2018

a, \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)

\(\Rightarrow\frac{1}{2^x}+\frac{1}{2^x}\cdot\frac{1}{16}=17\)

\(\Rightarrow\frac{1}{2^x}\left(1+\frac{1}{16}\right)=17\)

\(\Rightarrow\frac{1}{2^x}\cdot\frac{17}{16}=17\)

\(\Rightarrow\frac{1}{2^x}=17:\frac{17}{16}=\frac{1}{16}=\frac{1}{2^4}\)

=> x = 4

b, Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....;\left|x+\frac{1}{99.100}\right|\ge0\)

\(\Rightarrow\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)

\(\Rightarrow100x\ge0\Rightarrow x\ge0\)

\(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+...+x+\frac{1}{99.100}=100x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)

\(\Rightarrow99x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=100x\)

\(\Rightarrow100x-99x=1-\frac{1}{100}\)

\(\Rightarrow x=\frac{99}{100}\)