Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{8c+36}{c+7}=\frac{8c+56-20}{c+7}=\frac{8\left(c+7\right)}{c+7}-\frac{20}{c+7}=8-\frac{20}{c+7}\)
\(\Rightarrow\frac{8c+36}{c+7}\in Z\Leftrightarrow\frac{20}{c+7}\in Z\Leftrightarrow c+7\inƯ20\)
\(\Leftrightarrow c+7\in\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
\(\Leftrightarrow c\in\left\{-27;-17;-12;-11;-9;-8;-6;-5;-3;-2;3;13\right\}\)
Vậy \(\Rightarrow\frac{8c+36}{c+7}\in Z\Leftrightarrow\frac{20}{c+7}\in Z\Leftrightarrow c+7\inƯ20\)
\(\Leftrightarrow c+7\in\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
\(\Leftrightarrow c\in\left\{-27;-17;-12;-11;-9;-8;-6;-5;-3;-2;3;13\right\}\)
Vậy \(c\in\left\{-27;-17;-12;-11;-9;-8;-6;-5;-3;-2;3;13\right\}\) thì \(\frac{8c+36}{c+7}\) là số nguyên
4x-37 chia hết cho x-6
4x-24-13
=>13 chia hết cho x-6
x=7,19,5,-7
Ta đặt A\(=\dfrac{4c-4+8}{c-1}\) \(\Rightarrow A=\dfrac{4c-4+8}{c-1}=\dfrac{4\left(c-1\right)+8}{c-1}=4+\dfrac{8}{c-1}\)
Để A∈Z \(\Leftrightarrow\) \(4+\dfrac{8}{c-1}\in Z\) \(\Rightarrow\dfrac{8}{c-1}\in Z\) \(\Rightarrow8⋮\left(c-1\right)\) \(\Rightarrow c-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\) \(\Rightarrow c\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(\text{Ta có:}\)
\(\text{Để}\)\(\frac{4b+42}{b+7}\)\(\text{nguyên thì}\)\(4b+42⋮b+7\)
\(\text{Lại có:}\)
\(\text{4b + 42 = 4b + 28 + 14 = 4( b+7 ) + 14}\)
\(\text{Vì}\)\(b+7⋮b+7\)\(\Rightarrow4\left(b+7\right)⋮b+7\)
\(\text{Do đó:}\)\(14⋮b+7\)
\(\Rightarrow b+7\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
\(\Rightarrow b\in\left\{-6;-5;0;7\right\}\)
Ta đặt A=\(\dfrac{4n-2}{n-4}\)\(\Rightarrow A=\dfrac{4n-16+14}{n-4}=\dfrac{4\left(n-4\right)+14}{n-4}=4+\dfrac{14}{n-4}\)
Để A\(\in Z\) \(\Leftrightarrow4+\dfrac{14}{n-4}\in Z\) \(\Rightarrow\dfrac{14}{n-4}\in Z\) \(\Rightarrow14⋮\left(n-4\right)\Rightarrow n-4\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
Ta có \(\frac{5m+21}{m+6}=\frac{5\left(m+6\right)-9}{m+6}=5-\frac{9}{m+6}\)
để \(\frac{5m+21}{m+6}\)có giá trị nguyên\(\Leftrightarrow\frac{9}{m+6}\)có giá trị nguyên
\(\Leftrightarrow9⋮m+6\)
\(\Rightarrow m+6\inƯ\left(9\right)\)
ta có bảng
\(\frac{6a+54}{a+6}=\frac{\left(6a+36\right)+18}{a+6}=\frac{6.\left(a+6\right)+18}{a+6}=6+\frac{18}{a+6}\)
Vì 6 là số nguyên nên:
Phân số là số nguyên \(\Leftrightarrow18⋮a+6\)
\(\Leftrightarrow a+6\inƯ18=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
Ta có bẳng sau:
\(a+6\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) | \(-9\) | \(9\) | \(-18\) | \(18\) |
\(a\) | \(-7\) | \(-5\) | \(-8\) | \(-4\) | \(-9\) | \(-3\) | \(-12\) | \(0\) | \(-15\) | \(3\) | \(-24\) | \(12\) |
Vậy: Phân số đạt giá trị nguyên \(\Leftrightarrow a\in\left\{-7;-5;-8;-4;-9;-3;-12;0;-15;3;-24;12\right\}\)
\(\frac{6a+54}{a+6}=\frac{6\left(a+6\right)+18}{a+8}\)
=> 18 chia hết cho a+8
a nguyên => a+8 nguyên => a+8=Ư(18)={-18;-9;-6;-3;-2;-1;1;2;3;6;9;18}
bạn lập bảng ra nhé
Ta có \(\frac{8c+56}{c+6}=\frac{8\left(c+6\right)+8}{c+6}=8+\frac{8}{c+6}\)
Để\(\frac{8c+56}{c+6}\inℕ\)thì\(\frac{8}{c+6}\inℕ\)
\(\Rightarrow c+6\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow c\in\left\{-14;-10;-8;-7;-5;-4;-2;2\right\}\)