Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{7}{4}< \dfrac{a}{8}< 3\\ =>\dfrac{7}{4}.8< a< 3.8\\ =>14< a< 24\\ =>a\in\left\{15;16;17;...;23\right\}\)
b) \(\dfrac{2}{3}< \dfrac{a-1}{6}< \dfrac{8}{9}\\ =>\dfrac{2}{3}.6< a-1< \dfrac{8}{9}.6\\ =>4< a-1< \dfrac{16}{3}\\ =>4+1< a< \dfrac{16}{3}+1\\ =>5< a< \dfrac{19}{3}\\ =>a=6\)
b) \(\dfrac{2}{3}< a-\dfrac{1}{6}< \dfrac{8}{9}\\ =>\dfrac{2}{3}+\dfrac{1}{6}< a< \dfrac{8}{9}+\dfrac{1}{6}\\ =>\dfrac{5}{6}< a< \dfrac{19}{18}\\ =>a=1\)
c) \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\\ =>\dfrac{24}{18}< \dfrac{24}{6a}< \dfrac{24}{9}\\ =>9< 6a< 18\\ =>\dfrac{9}{6}< a< \dfrac{18}{6}\\ =>1,5< a< 3\\ =>a=2\)
Thì mik bổ xung thêm. Tổng các chữ số của A là:
7+2+5+7+6+0+0+0 = 27
ĐS: 27
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
\(a)\) Ta có :
\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)
Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3x+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
Chúc bạn học tốt ~
\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau :
\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)
Áp dụng vào ta có :
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)
Trường hợp 2 :
\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại )
Vậy GTNN của \(A=8\) khi \(0\le x\le8\)
Chúc bạn học tốt ~
a) \(\dfrac{2}{3}< a-\dfrac{1}{6}< \dfrac{8}{9}\\ \Rightarrow\dfrac{2}{3}+\dfrac{1}{6}< a-\dfrac{1}{6}+\dfrac{1}{6}< \dfrac{8}{9}+\dfrac{1}{6}\\ \dfrac{5}{6}< a< \dfrac{19}{18}\)
Do a là số nguyên nên a=1
b) \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\left(a\ne0\right)\\ \Rightarrow\dfrac{4}{3}< \dfrac{4}{a}< \dfrac{4}{\dfrac{3}{2}}\\ \Rightarrow3>a>1,5\)
Do a là số nguyên nên a=2
a: \(\dfrac{2}{3}< \dfrac{a-1}{6}< \dfrac{8}{9}\)
=>\(\dfrac{12}{18}< \dfrac{3\left(a-1\right)}{18}< \dfrac{16}{18}\)
=>12<3(a-1)<16
=>12<3a-3<16
=>15<3a<19
=>\(5< a< \dfrac{19}{3}\)
mà a nguyên
nên a=6
b: \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\)
=>\(\dfrac{24}{18}< \dfrac{24}{6a}< \dfrac{24}{9}\)
=>9<6a<18
mà a nguyên
nên 6a=12
=>a=2