Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2a+bc=\left(a+b+c\right)a+bc=a^2+ab+ac+bc\)
\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
Tương tự, ta có \(2b+ca=\left(b+c\right)\left(b+a\right)\)và \(2c+ab=\left(c+a\right)\left(c+b\right)\)
Vậy \(\left(2a+bc\right)\left(2b+ca\right)\left(2c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)là số chính phương.
Cách lầy nèk
\(Q=\frac{a}{1+2a}+\frac{b}{1+2b}\le\frac{a}{2\sqrt{2a}}+\frac{b}{2\sqrt{2b}}=\frac{\sqrt{a}}{2\sqrt{2}}+\frac{\sqrt{b}}{2\sqrt{2}}\)
\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{2}}=\frac{\sqrt{\frac{a}{2}}+\sqrt{\frac{b}{2}}}{2\sqrt{2}.\frac{1}{\sqrt{2}}}\le\frac{\frac{a+\frac{1}{2}}{2}+\frac{b+\frac{1}{2}}{2}}{2}=\frac{a+b+1}{4}=\frac{2}{4}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Có a+b =1
Áp dụng bất đẳng thức cô-si
=> ab= \(\frac{\left(a+b\right)}{2}\)
<=> ab= \(\frac{1}{2}\)
P=\(\frac{\left(ab+a+ab+b\right)}{\left(ab+a+b+1\right)}\)
= \(\frac{\left(2ab+1\right)}{\left(ab+2\right)}\)
=\(\frac{\left[\left(2ab+4\right)-3\right]}{\left(ab+2\right)}\)
=\(2+\left[\frac{-3}{\left(ab+2\right)}\right]\)
Có ab = \(\frac{1}{2}\)
\(ab+2\Leftarrow\frac{5}{2}\)
\(\frac{1}{\left(ab+2\right)}\ge\frac{2}{5}\)
\(\frac{-1}{\left(ab+2\right)}\Leftarrow\frac{-2}{5}\)
\(\frac{-3}{ \left(ab+2\right)}\Leftarrow\frac{-6}{5}\)
=> GTLN = \(\frac{-6}{5}+2=\frac{4}{5}\) tại \(a=b=\frac{1}{2}\)
Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)
Áp dụng bất đẳng thức AM - GM ta có :
\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)
\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)
\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)
Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)
Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)
\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)
Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)
Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Đúng 3 Sai 0 Sky Blue đã chọn câu trả lời này.
2a+2b=ab
<=>ab-2a-2b=0
<=>a(b-2)-2b+4=4
<=>(a-2)(b-2)=4
rồi tự gpt ra