K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

a:

\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)

Đặt \(S=1^2+2^2+...+n^2\)

Với n=1 thì \(S_1=1^2=1=\dfrac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}\)

=>(1) đúng với n=1

Giả sử (1) đúng với n=k

=>\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta sẽ cần chứng minh (1) đúng với n=k+1

Tức là \(S_{k+1}=\dfrac{\left(k+1+1\right)\cdot\left(k+1\right)\left(2\cdot\left(k+1\right)+1\right)}{6}\)

Khi n=k+1 thì \(S_{k+1}=1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\dfrac{k\left(2k+1\right)}{6}+k+1\right)\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+k+6k+6}{6}\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+3k+4k+6}{6}\)

\(=\dfrac{\left(k+1\right)\cdot\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+1+1\right)\left[2\left(k+1\right)+1\right]}{6}\)

=>(1) đúng

=>ĐPCM
b: \(A=1\cdot5+2\cdot6+3\cdot7+...+2023\cdot2027\)

\(=1\left(1+4\right)+2\left(2+4\right)+3\left(3+4\right)+...+2023\left(2023+4\right)\)

\(=\left(1^2+2^2+3^2+...+2023^2\right)+4\left(1+2+2+...+2023\right)\)

\(=\dfrac{2023\cdot\left(2023+1\right)\left(2\cdot2023+1\right)}{6}+4\cdot\dfrac{2023\left(2023+1\right)}{2}\)

\(=\dfrac{2023\cdot2024\cdot4047}{6}+\dfrac{2023\cdot2024}{1}\)

\(=2023\left(\dfrac{2024\cdot4047}{6}+2024\right)⋮2023\)

\(A=\dfrac{2023\cdot2024\cdot4047}{6}+2023\cdot2024\)

\(=2024\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

\(=23\cdot11\cdot8\cdot\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

=>A chia hết cho 23 và 11

7 tháng 10 2017

  A = n^5 - n = n(n^4-1) = n(n^2 +1)(n^2 -1) =n(n^2 +1)(n+1)(n-1) 
* n(n +1) chia hết cho 2 => A chia hết cho 2. 

*cm: A chia hết cho 5. 
n chia hết cho 5 => A chia hết cho 5. 
n không chia hết cho 5 => n = 5k + r (với r =1,2,3,4) 
- r = 1 => n - 1 = 5k chia hết cho 5 => A chia hết cho 5 
- r = 2 => n^2 + 1 = 25k^2 + 20k + 5 chia hết cho 5 => A chia hết cho 5 
- r = 3 => n^2 + 1 = 25k^2 + 30k + 10 chia hết cho 5 => A chia hết cho 5 
- r = 4 => n +1 = 5k + 5 chia hết cho 5 => A chia hết cho 5 
=> A luôn chia hết cho 5 
2,5 nguyên tố cùng nhau => A chia hết cho 2.5=10 => A tận cùng là 0 
=> đpcm

7 tháng 10 2017

TÔI CẦN GẤP LẮM ANH EM NHỚ GIẢI ĐẦY ĐỦ CÓ LỜI VĂN ĐÀNG HOÀNG VÀ SỚM NHẤT NHẤT THÌ MỚI ĐƯỢC TÍCH

10 tháng 7 2016

a) giải:

2x(3y-2) + (3y-2) = -55

=>(2x+1)(3y-2) =-55

=>3y-2 E Ư(-55) = {-1;-5;-11;-55;1;5;11;55}

Mà 3y -2 chia cho 3 dư 1

=> 3y - 2 E {-1;-5;-11;-55}

Vậy:(x,y) E {(5;-1) ; (2;-3) ; (-28 - 1) ; (-1;19)}

19 tháng 11 2015

phantuananh bây giờ điểm âm rồi à

19 tháng 11 2015

còn 10 điểm nữa mình lên bảng xếp hạng

29 tháng 10 2016

Mk chỉ lm mẫu cho bn 2 câu thôi , các câu khác tương tự nhóa ~~~

a, 10 chia hết cho n - 1

=> n - 1 thuộc Ư(10)

Mà : Ư(10) = { 1;2;5;10 }

+) n - 1 = 1 => n = 1 + 1 => n = 2

+) n - 1 = 2 => n = 2 + 1 => n = 3

+) n - 1 = 5 => n = 5 + 1 => n = 6

+) n - 1 = 10 => n = 10 + 1 => n = 11

Vậy n thuộc { 2;3;6;11 }

b, n + 9 chia hết cho n - 1

Mà : n - 1 chia hết cho n - 1

Nên : ( n + 9 ) - ( n - 1 ) chia hết cho n - 1

=> n + 9 - n + 1 chia hết cho n - 1

=> 10 chia hết cho n - 1 

=> n - 1 thuộc Ư(10)

Mà : Ư(10) = { 1;2;5;10 }

+) n - 1 = 1 => n = 1 + 1 =>n = 2

+) n - 1 = 2 =>n = 2 + 1 => n = 3

+) n - 1 = 5 => n = 5 + 1 => n = 6

+) n - 1 = 10 => n = 10 + 1 => n = 11

Vậy n thuộc { 2;3;6;11 }

5 tháng 1 2020

Bài 1:

a, C=\(\frac{n}{n-2}=\frac{n-2+2}{n-2}=1+\frac{2}{n-2}\)

Để \(C\in Z\)thì \(\frac{2}{n-2}\in Z\)=> n-2\(\in\)Ư(2)=\(\left\{\pm1,\pm2\right\}\).Ta có bảng:

n-2-2-112
n0134
5 tháng 1 2020

Câu b lm tg tự thuộc Ư(1)

14 tháng 1 2016

1 số nguyên tố

2 n = 1 ; n = 2

 

14 tháng 1 2016

Giải thích ra giùm mình với!