K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

ta có :

32 = 9 

33 = 27 > 25 

34 = 81

34 = 243 < 250

nhưng 36 = 729 > 250

vậy với số mũ n = 3,4,5 ta có : 25 < 3n < 250

13 tháng 12 2017

25 < 3n < 250

\(\Leftrightarrow\)33 \(\le\) 3n \(\le\)35

\(\Leftrightarrow\)\(\le\)\(\le\)5

\(\Leftrightarrow\)n = { 3; 4; 5 }

Ta có: \(100< 5^{2x-1}\le5^6\)

\(\Leftrightarrow5^2< 5^{2x-1}\le5^6\)

\(\Leftrightarrow2x-1\in\left\{3;5\right\}\)

\(\Leftrightarrow2x\in\left\{4;6\right\}\)

hay \(x\in\left\{2;3\right\}\)

29 tháng 7 2018

a, \(\frac{1}{3}n=\frac{1}{9}\Rightarrow n=\frac{1}{9}:\frac{1}{3}\Rightarrow n=\frac{1}{9}.3=\frac{1}{3}\)

vậy n=1/3

b, \(\Rightarrow4n.16-2n=0\Rightarrow n.\left(4.16-2\right)=0\Rightarrow62n=0\Rightarrow n=0\)

vậy n=0

c, 


 

29 tháng 7 2018

a, 1/3n = (1/3)^2 

=> n = 1/3

b, 2n = 4n.4^2

=>  2n = 4^3n

=> 2n=2^6n

=> n=2^5n

=> n=0

c) 3n + 2/9 = 3^9

n=177145/27

=> 

9 tháng 9 2023

mình đang cần gâps

 

9 tháng 9 2023

6255 và 1257

a, 6255 = (54)5 = 520

1257 = (53)7 = 521

Vì 520 < 521 nên 6255 < 1257

b,  32n = (32)n = 9n

     23n = (23)n = 8n

     9n > 8n ( nếu n > 0)

      9n = 8n (nếu n = 0)

Vậy nếu n = 0 thì 23n = 32n
      nếu n > 0 thì 32n > 23n

1 tháng 8 2023

Bài 4:

\(a,2^{30}=\left(2^3\right)^{10}=8^{10};3^{20}=\left(3^2\right)^{10}=9^{10}\\ Vì:8^{10}< 9^{10}\left(Vì:8< 9\right)\Rightarrow2^{30}< 3^{20}\\ b,9^{10}.27^5=\left(3^2\right)^{10}.\left(3^3\right)^5=3^{20}.3^{15}=3^{35}\\ 243^7=\left(3^5\right)^7=3^{35}\\ Vì:3^{35}=3^{35}\Rightarrow243^7=9^{10}.27^5\)

1 tháng 8 2023

Bài 5:

100< 52x-3 < 59

Đề vầy hả em?

 

1 tháng 9 2023

Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.

         (3n + 1)2 =  9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)

        (3n + 2)2 =   (3n + 2).(3n +2) = 9n2 + 12n + 4

 ⇒(3n + 2)2  ≥  9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)

Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2

 Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên 

9n2 + 3n + 4 là số chính phương khi và chỉ khi:

 9n2 + 3n + 4 = (3n + 2)2  ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4

 9n2 + 12n + 4 - 9n2 - 3n - 4 =  9n = 0 ⇒ n = 0

Vậy với n = 0 thì 9n2 + 3n + 4 là  số chính phương.

 

     

      

 

 

 

 

 

 

4 tháng 1 2016

33n+1 = 9n+2

33n+1 = 32(n+2)

33n+1 = 32n+4

3n + 1 = 2n + 4

2n - 3n = 1 - 4

-n = -3

n = 3 

4 tháng 1 2016

\(3^{3n+1}=9^{n+2}=\left(3^2\right)^{2n+2}=2^{4n+4}=>3n+1=4n+4=>n=-3\)

3 tháng 1 2017

 \(3^{3n+1}=9^{n+2}\Rightarrow3^{3n+1}=\left(3^2\right)^{n+2}\)

\(\Rightarrow3^{3n+1}=3^{2\left(n+2\right)}\Rightarrow3n+1=2\left(n+2\right)\)

\(\Rightarrow3n+1=2n+4\Rightarrow3n-2n=4-1\)

\(\Rightarrow n=3\)