Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a+2014}{a-2014}=\frac{a+2015}{a-2015}\)
\(\Rightarrow\left(a+2014\right)\left(a-2015\right)=\left(a-2014\right)\left(a+2015\right)\)
\(\Rightarrow a^2-a-2014.2015=a^2+a-2014.2015\)
\(\Leftrightarrow a^2-a=a^2+a\)
=> a2 - a2 - a = a
=> -a = a
=> 0 = a + a
=> 2a = 0
=> a = 0
Vậy \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)
(x-1)/2016 +(x-2)/2015 -(x-3)/2014 = (x-4)/2013. =>(x-1)/2016 +(x-2)/2015 = (x-3)/2014 + (x-4)/2013. =>. (X-1)/2016 -1 + (x-2)/2015 -1 = (x -3)/2014 -1 + (x-4)/2013 -1 => (x -2017)/2016 + (x-2017)/2015 -(x-2017)/2014 -(x-2017)/2013 =0. => (x-2017)(1/2016 +1/2015 -1/2014 -1/2013) = 0 => x-2017 =0 => x = 2017
Ta có: \(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{2013}\)
\(\Leftrightarrow\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}-\frac{x-4}{2013}=0\)
\(\Leftrightarrow\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)-\left(\frac{x-3}{2014}-1\right)-\left(\frac{x-4}{2013}-1\right)=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\) nên \(x-2017=0\Leftrightarrow x=2017\)
a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)
b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)
\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\left(\frac{x-1}{2016}+1\right)+\left(\frac{x-2}{2015}+1\right)=\left(\frac{x-3}{2014}+1\right)+\left(\frac{x-4}{2013}+1\right)\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2014}\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x+2017}{2014}-\frac{x+2017}{2013}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
\(\Leftrightarrow x-2017=0\)
\(\Leftrightarrow x=2017\)
\(\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016} \)
\(\Leftrightarrow\frac{x+4}{2013}+1+\frac{x+3}{2014}+1-\frac{x+2}{2015}-1-\frac{x+1}{2016}-1=0\)
\(\Leftrightarrow\frac{x+2014+2013}{2013}+\frac{x+3+2014}{2014}-\frac{x+2+2015}{2015}-\frac{x+1+2016}{2016}=0\)
\(\Leftrightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x+2017=0\) ( vì \(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\)>0)
\(\Leftrightarrow x=2017\)
\(\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016}\)
\(\Rightarrow\frac{x+4}{2013}+1+\frac{x+3}{2014}+1=\frac{x+2}{2015}+1+\frac{x+1}{2016}+1\)
\(\Rightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}=\frac{x+2017}{2015}+\frac{x+2017}{2016}\)
\(\Rightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}=0\)
\(\Rightarrow\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
\(Do\)\(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
Vậy \(x=-2017\)
bạn bấm vào "đúng 0" là sẽ có đáp án hiện ra
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}.\)
\(\left(\frac{x+4}{2012}+1\right)+\left(\frac{x+3}{2013}+1\right)=\left(\frac{x+2}{2014}+1\right)+\left(\frac{x+1}{2015}+1\right)\)
\(\left(\frac{x+4}{2012}+\frac{2012}{2012}\right)+\left(\frac{x+3}{2013}+\frac{2013}{2013}\right)=\left(\frac{x+2}{2014}+\frac{2014}{2014}\right)+\left(\frac{x+1}{2015}+\frac{2015}{2015}\right)\)
\(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
\(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
\(\left(x+2016\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
\(\Rightarrow x+2016=0\Rightarrow x=\left(-2016\right)\)
2. -3\(\sqrt{3}\)
<=>x+2015/2013