K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2022

\(\left(2x-1\right)^3=\dfrac{8}{125}\)

\(\left(2x-1\right)^3=\pm\left(\dfrac{2}{5}\right)^3\)

\(\text{Vậy }2x-1=\dfrac{2}{5}\)

       \(2x\)        \(=\dfrac{2}{5}+1=\dfrac{7}{5}\)

        \(x\)         \(=\dfrac{7}{5}.\dfrac{1}{2}=\dfrac{7}{10}\)

\(\text{hoặc }2x-1=\dfrac{-2}{5}\)

        \(2x\)        \(=\left(\dfrac{-2}{5}\right)+1=\dfrac{3}{5}\)

         \(x\)         \(=\dfrac{3}{5}.\dfrac{1}{2}=\dfrac{3}{10}\)

\(\Rightarrow x\in\left\{\dfrac{7}{10};\dfrac{3}{10}\right\}\)

NM
15 tháng 8 2021

Vì x là số dương nên ta Giả sử \(\hept{\begin{cases}x^2=a\\\frac{2}{x}=b\end{cases}}\) với a,b là hai số tự nhiên

Vậy \(x=\frac{2}{b}\Rightarrow x^2=\frac{4}{b^2}=a\Leftrightarrow4=ab^2\)

Do b là số tự nhiên nên \(\orbr{\begin{cases}b=1\Rightarrow a=4\\b=2\Rightarrow a=1\end{cases}}\) vậy \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

13 tháng 9

chắc bạn đang học lớp 7 nên mik sẽ giải kiểu lớp 7 nha
mỗi câu mik chia làm 2 bài nhé!
Bài 1. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + 3 y - x \sqrt{5} = y \sqrt{5} + 7\)

\(\Rightarrow - \left(\right. x + y \left.\right) \sqrt{5} = 7 - x - 3 y\).

Vế trái vô tỉ (nếu \(x + y \neq 0\)), vế phải hữu tỉ.
\(\Rightarrow x + y = 0 , \textrm{ }\textrm{ } 7 - x - 3 y = 0\).

\(\Rightarrow x = - y , \textrm{ }\textrm{ } 7 + y - 3 y = 0 \Rightarrow y = \frac{7}{2} , x = - \frac{7}{2}\).

Đáp số: \(\left(\right. - \frac{7}{2} , \frac{7}{2} \left.\right)\).


(b) \(5 x + y - \left(\right. 2 x - 1 \left.\right) \sqrt{7} = y \sqrt{7} + 2\).

\(\Rightarrow - \left(\right. 2 x + y - 1 \left.\right) \sqrt{7} = 2 - 5 x - y\).

\(\Rightarrow 2 x + y - 1 = 0 , \textrm{ }\textrm{ } 2 - 5 x - y = 0\).

Giải hệ:

\(\left{\right. 2 x + y = 1 \\ 5 x + y = 2 \Rightarrow x = \frac{1}{3} , y = \frac{1}{3} .\)

Đáp số: \(\left(\right. \frac{1}{3} , \frac{1}{3} \left.\right)\).


Bài 2. Tìm \(\left(\right. x , y \left.\right) \in \mathbb{Q}^{2}\)

(a) \(x + y + 61 = 10 \sqrt{x} + 12 \sqrt{y}\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow a^{2} + b^{2} + 61 = 10 a + 12 b\).

Thử \(a = 5 , b = 6\): \(25 + 36 + 61 = 122 , \textrm{ }\textrm{ } 10 \cdot 5 + 12 \cdot 6 = 122\).

Đáp số: \(\left(\right. 25 , 36 \left.\right)\).


(b) \(2 x + y + 4 = 2 \sqrt{x} \left(\right. \sqrt{y} + 2 \left.\right)\).

Đặt \(x = a^{2} , y = b^{2}\).

\(\Rightarrow 2 a^{2} + b^{2} + 4 = 2 a b + 4 a\).

\(\Rightarrow \left(\right. a - b \left.\right)^{2} + 2 \left(\right. a - 2 \left.\right) = 0\).

\(\Rightarrow a = 2 , b = 2\).

Đáp số: \(\left(\right. 4 , 4 \left.\right)\).


👉 Vậy:

  • Bài 1(a): \(\left(\right. - 7 / 2 , 7 / 2 \left.\right)\).
  • Bài 1(b): \(\left(\right. 1 / 3 , 1 / 3 \left.\right)\).
  • Bài 2(a): \(\left(\right. 25 , 36 \left.\right)\).
  • Bài 2(b): \(\left(\right. 4 , 4 \left.\right)\).
    cho mik xin tick nha. Cảm ơn cậu !


*Đa thức \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)

Ta có: \(B=-4x^3-2x^2-2+2x\left(3+x\right)-9x+2x^3\)

\(=-2x^3-2x^2-2+6x+2x^2-9x\)

\(=-2x^3-3x-2\)

*Đa thức \(C=x^3-2x\left(3x-1\right)+4\)

Ta có: \(C=x^3-2x\left(3x-1\right)+4\)

\(=x^3-6x^2+2x+4\)

30 tháng 4 2017

<=> x+ 2x2y2 + 2y2 - x2y+ 2x- 2 = 0

<=> -x+ x2y2 + 2y2 - 2 = 0

<=> x2 (y2 - 1) + 2 (y2 - 1) = 0

<=> (x+ 2)(y2 - 1) = 0

Vì x2 \(\ge\)0 với mọi x => y2 - 1 = 0 <=> y = -1 và y = 1.

Vậy x \(\in\)R , y = {-1;1}

30 tháng 4 2017

bạn đợi mình xíu nha!!

4 tháng 10 2017

bạn nào giỏi toán giúp mình với mình cảm ơn nhiều

9 tháng 1 2019

Câu 1 .

\(\left|x^2+|x+1|\right|=x^2+5\)

\(Đkxđ:x^2+5\ge0\)

\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 ) 

\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha ) 

Vậy : x = 4 hoặc x = -6