Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{3}{2}\)ra ta có : \(\frac{3}{2}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}......\right)\)
Vậy => công thức chung : \(\frac{3}{2}\left(\frac{1}{x.\left(x+1\right)}\right)\)
=> số thứ 30 :\(\frac{1}{704}\)
Ta có: S= \(\frac{3}{2}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}......\right)\)= \(\frac{3}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...-\frac{1}{33}\right)\)
S=\(\frac{5}{11}\)
Các số hạng của dãy được viết dưới dạng:
\(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};....\)
hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};....\)
=> Số thứ 2015 là \(\frac{2016^2}{2015.2017}\) Ta cần tính:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{2016^2}{2015.2017}\)
\(=\frac{\left(2.3.4.....2016\right)\left(2.3.4.....2016\right)}{\left(1.2.3.....2015\right)\left(3.4.5.....2017\right)}=\frac{2016.2}{1.2017}=\frac{4032}{2017}\)
Cho mình **** nha bạn
Violympic toán 6 bài đỉnh núi trí tuệ phải ko
Hình như là 1/44099
1. Dãy số 3, 8, 13, 23,... có dạng số hạng thứ n là: a_n = 5n - 2.
Vậy số hạng thứ 30 của dãy số trên là: a_30 = 5 x 30 - 2 = 148. 2.
a) Dãy số 1, 4, 9, 16,... có dạng số hạng tổng quát là: a_n = n ^ 2.
b) Để tìm số hạng thứ n, ta giải phương trình n ^ 2 = 625, ta được n = 25.
c) Số hạng thứ 100 là: a_100 = 100^2 = 10000.
3. a) Dãy số 1, 2, 3, 4,... đến 195 có 195 số.
b) Chữ số cuối cùng của dãy số trên là 5.