Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= x(x^98+1)+x(x^54+1)+x(x^10+1)-2x+7
= x[(x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1]-2x+7
Vì (x^2)^27+1 chi hết cho x^2+1
(x^2)^27+1 chi hết cho x^2+1
(x^2)^5+1 chia hết cho x^2+1
=> x[x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1] chia hết cho x^2+1
Vậy dư trong phép chia là 7-2x
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
HD
Ghép tạo thừa số (x+1)
làm đi không làm dduocj mình mới làm chi tiết