Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi tổng số học sinh khối 7 là $a$ (em).
Theo bài ra ta có: $a-2\vdots 3; a-3\vdots 4; a-4\vdots 5; a-5\vdots 6, a-9\vdots 10$
$\Rightarrow a+1\vdots 3,4,5,6,10$
$\Rightarrow a+1 =BC(3,4,5,6,10)$
$\Rightarrow a+1\vdots BCNN(3,4,5,6,10)$
$\Rightarrow a+1\vdots 60$
$\Rightarrow a+1\in\left\{0; 60; 120; 180; 240; 300;...\right\}$
Mà $a$ trong khoảng từ 235 đến 250 nên $a=240$ (em)
Gọi số học sinh khối 7 là: a
Theo đề bài,
-biết số học sinh chia cho 3 dư 2
=>(a+1)\(⋮\)3
-a chia 4 dư 3
=>(a+1)\(⋮4\)
-a chia cho 5 dư 4
=>(a+1)\(⋮5\)
-a chia cho 6 dư 5
=>(a+1)\(⋮6\)
-a chia 10 dư 9
=>(a+1)\(⋮10\)
Từ đó =>(a+1)\(\in BC\left(3;4;5;6;10\right)\) (và \(236\le a+1\le251\))
BCNN(3;4;5;6;10)=23.3.5=120
<=> BCNN(3;4;5;6;10)=B(120)={0;120;240;360;480;...}
Mà \(236\le a+1\le251\)
=>a+1=240
=>a=240-1
=>a=239
Vậy số học sinh khối 7 ngôi trường đó là 239
+) Nhận xét: Với n thuộc N ta có : n3 - n = n(n2 - 1) = n.(n - 1).(n + 1)
n - 1; n ; n + 1 là 3 số tự nhiên liên tiếp nên tích n(n-1).(n+1) chia hết cho 6 => n3 - n chia hết cho 6
Xét S - N = (n13+n23+...+nk3 ) - (n1+n2+n3+...+nk) = (n13 - n1) + (n23 - n2) + ...+ (nk3 - nk)
từ nhận xét trên => n13 - n1 chia hết cho 6; n23 - n2 chia hết cho 6 ;...; nk3 - nk chia hết cho 6
=> S - N chia hết cho 6
=> S và N có cùng số dư khi chia cho 6
Xét N = 20152016 chia cho 6
Có: 2015 đồng dư với 5 (mod 6)
=> 20152 đồng dư với 52 (mod 6); 52 đồng dư với 1 (mod 6)
=> 20152 đòng dư với 1 (mod 6)
=> 20152016 = (20152)1008 đồng dư với 11008 = 1(mod 6)
=> N chia cho 6 dư 1 => S chia cho 6 dư 1
a) S = 1 + 2 + 22 + ... + 2100
S = 1 + ( 2 + 22 ) + ... + ( 299 + 2100 )
S = 1 + 2 . ( 1 + 2 ) + ... + 299 . ( 1 + 2 )
S = 1 + 2 . 3 + ... + 299 . 3
S = 1 + 3 . ( 2 + ... + 299 )
Vậy S chia 3 dư 1
b) tương tự : ( ghép 5 số )
Ta có:
\(S=1+3+3^2+3^3+...+3^{100}\)
\(=\left(1+3+3^2+3^3+3^4\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1\left(1+3+3^2+3^3+3^4\right)+...+3^{96}\left(1+3+3^2+3^3+3^4\right)\)
\(=1.121+...+3^{96}.121\)
\(=121\left(1+...+3^{96}\right)⋮121\)
Vậy \(S\div121\) có chữ số tận cùng là \(0\)
bạn giải cho mình với