K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

ta có : \(3^2\equiv2\left(mod7\right)\) \(\Rightarrow3^6=\left(3^2\right)^3\equiv1\left(mod7\right)\)

\(\Rightarrow\left(3^6\right)\equiv1\left(mod7\right)\)hay \(3^{1998}\equiv1\left(mod7\right)\)

mặt khác : \(3^2\equiv2\left(mod7\right)\)nên \(3^{2000}=3^{1998}.3^2\equiv1.2\left(mod7\right)\)

hay \(3^{2000}\div7\)  \(2\)

4 tháng 1 2023

b.Gọi số cần tìm là a.

Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3

          a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5            và a là nhỏ nhất

          a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7

\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).

\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.

\(\Rightarrow\) a + 2 = 105 

\(\Rightarrow\) a = 103

20 tháng 1 2023

Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.batngo

21 tháng 12 2019

GỌI SỐ TỰ NHIÊN CHIA CHO 7 DƯ 3, CHO 17 DƯ 12, CHO 23 DƯ 7 LÀ a

THEO BÀI RA, TA CÓ: \(a=7q+3=17p+12=23y+7\)( TRONG ĐÓ \(q,p,y\)LÀ THƯƠNG CỦA CÁC PHÉP CHIA)

\(\Rightarrow a+39=7q+42=7\cdot\left(q+6\right)\left(1\right)\)

\(a+39=17p+51=17\cdot\left(p+3\right)\left(2\right)\) 

 \(a+39=23y+46=23\cdot\left(y+2\right)\left(3\right)\)

TỪ\(\left(1\right),\left(2\right)\&\left(3\right)\Rightarrow a+39\in BC\left(7;17;23\right)\)

TA CÓ: \(7=7;17=17;23=23\)

  \(\Rightarrow BCNN\left(7;17;23\right)=7\cdot17\cdot23=2737\)

 DO ĐÓ: \(a+39=2737k\left(k\in N\right)\)

        \(\Leftrightarrow a=2737k-39\)

        \(\Leftrightarrow a=2737\cdot\left(k-1\right)-2698\)

  VẬY PHÉP CHIA a CHO 2737 CÓ SỐ DƯ LÀ 2698

  

18 tháng 12 2019

ko ai trả lời cho mày đâu

3 tháng 9 2018

nhanh lên nha các bn

29 tháng 10 2020

ò mà nó khó qué ><
 

29 tháng 7 2019

Đáp án cần chọn là: D

Vì a chia cho 7 dư 4⇒(a+3)⋮7

a chia cho 9 dư 6 ⇒(a+3)⋮9

Do đó (a+3)∈BC(7,9) mà BCNN(7,9)=63.

Do đó (a+3)⋮63⇒a chia cho 63 dư 60.

8 tháng 12 2021

câu D bạn nhé

9 tháng 4 2017

 vì a chia 7 dư 4 nên a+3 chia hết cho 7

vì a chia 9 dư 6 nên a+3 chia hết cho 9 

==> a+3 chia hết cho 7 và 9

mã 7 và 9 nguyên tố cùng nhau 

==>a+3 chia het cho 63 

==> a chia 63 du 60

9 tháng 4 2017

a = 123

nên a chia 63 dư 60

16 tháng 7 2018

Ta có :

Nếu a + 3 thì chia hết cho 7

Nếu a + 3 thì chia hết cho 9

 a + 3 thì chia hết cho cả 7 và 9

mã 7 và 9 nguyên tố cùng giống nhau

a + 3 chi hết cho 63

Khi a chia cho 63 thì sẽ dư 60 

k cho mình nha bạn Nguyễn Lê Cát Tường 10

16 tháng 7 2018

                    Gọi số dư khi chia a cho 63 là r  thì a = 63k + r (0 =< r < 63) (1) 
    Theo bài ra ta có: a chia 7 dư 4 => r chia 7 dư 4 (vì 63k chia hết cho 7) 
    Ta lại có:      a chia 9 dư 6 => r chia 9 dư 6 => r = 9m+6 (m nguyên, m thuộc [0;6]) 
r chia 7 dư 4 => r - 4 chia hết cho 7 hay 9m+2 chia hết cho 7 (2) 
Vì m thuộc [0;6] => (2) chỉ thỏa mãn khi m = 6 => r = 9.6 + 6 = 60. 
                                        Đáp số:60