Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7100 - 799 + 798 + 73 + 71
= 798 . 72 - 798 . 7 + 798 + 73 + 71
= 798 . ( 49 - 7 + 1 ) + 350
= 798 . 43 + 8 . 43 + 6
= 43 . ( 798 + 8 ) + 6
vì 43 . ( 798 + 8 ) chia hết cho 43.
vì 6 nhỏ hơn 43 và ko chia hết cho 43 => số dư trong phép chia A cho 43 là 6.
ai thấy đúng thì
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
71 + 72 + 73 + 74 + 75 + 76
= 71.1 + 71.7 + 73.1 + 73.7 + 75.1 + 75.7
= 71.8 + 73.8 + 75.8
= 8.( 71 + 73 + 75 )
Vì 8 chia hết cho 8
suy ra 8.( 71 + 73 + 75 ) chia hết cho 8
suy ra 71 + 72 + 73 + 74 + 75 + 76 chia hết cho 8
a) Nhóm 2 số hạng liền nhau và đặt thừa số chung như bạn Thảo Ly đã làm
b) Nhóm 3 số hạng liền nhau:
(21 + 22 + 23) + ... + (297 + 298 + 299) + 2100
= 2(1 + 2 + 22) + ... + 297 (1 + 2 + 22) + 2100
= 2.7 + ... + 297. 7 + 2100
Vậy số dư của tổng trên chia cho 7 bằng số dư của 2100 chia cho 7.
Ta có: 23 = 8 chia cho 7 dư 1
=> 299 = (23)33 chia cho 7 cũng dư 1
=> 2100 = 2. 299 chia cho 7 dư 2.
Vậy tổng đã cho chia cho 7 dư 2
1.
Đặt $A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
Có:
$A+n=510$
$2^{101}-2+n=510$
$n=510+2-2^{101}=512-2^{101}$
2.
$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$
$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$
$=7+(1+7)(7^2+7^4+....+7^{20})$
$=7+8(7^2+7^4+...+7^{20)$
$\Rightarrow A$ chia 8 dư 7.
\(A=\left(7+7^2\right)+\left(7^2+7^3\right)+...+\left(7^{98}+7^{99}\right)\)
\(A=7\left(1+7\right)+7^2\left(1+7\right)+...+7^{98}\left(1+7\right)\)
\(A=8.\left(7+7^2+...+7^{98}\right)⋮8\)
vậy A chia 8 dư 0