Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu chia hết cho 9 thì chia hết cho 31 dư 28-5=23
Hiệu của 31 va 29:31-29=2
Thương của phép chia cho 31 là:
(29-23):2=3
Số cần tìm là:
31*3+28=121
DS :121
b)1/a + 1/b + 1/c=1 / (a + b + c)
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau)
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0.
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)
Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)
Ta có: a.b = (5.m + 1).(5.n + 2)
= (5.m + 1).5.n + (5.m + 1).2
= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2
=> a.b chia 5 dư 2
5 là số nguyên tố. Theo định lý Fermat nhỏ
\(5^{2017}-5\equiv0\) (mod 2017)
\(\Rightarrow5^{2021}=5^{2017}.5^4=\left(5^{2017}-5+5\right).5^4=\)
\(=5^4\left(5^{2017}-5\right)+5^5=5^4\left(5^{2017}-5\right)+3125=\)
\(=5^4\left(5^{2017}-5\right)+2017+1108\)
Ta có
\(5^4\left(5^{2017}-5\right)+2017⋮2017\)
\(\Rightarrow5^{2021}\equiv1108\) (mod 2017)