Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ đăng tóm tắt thôi nhé, bận lắm, mà lát đi, khoảng 10h giờ mình phải học bài của mình, bạn tự nghĩ đi, kp q=1 và a=898, bạn nghĩ đi, lát mình giải hộ.
Theo bài ra ta có :
120.a+58 = 135.a+88
=> 88-58 = 135a-120a
=> 30 = 15a
=> a=2
Bạn xem lời giải của mình nhé:
Giải:
32000 = 33.666+2 = (33)666 . 32 = (33)666 . 9
\(\equiv\left(-1\right)^{666}.2\left(mod7\right)\\ \equiv1.2\left(mod7\right)\\ \equiv2\left(mod7\right)\)
=> 32000 chia 7 dư 2
Chúc bạn học tốt!
Ta có:33=27\(\equiv\)-1(mod 7)
\(\Rightarrow\)(33)666=31998\(\equiv\)(-1)666(mod 7)
\(\Rightarrow\)31998\(\equiv\)1(mod 7)
\(\Rightarrow\)31998.32=32000\(\equiv\)1.32\(\equiv\)2(mod 7)
\(\Rightarrow\)32000\(\equiv\)2(mod 7)
\(\Rightarrow\)32000 chia 7 dư 2
Ta gọi số không chia hết cho 5 và không chia hết cho 7 là n.
Ta có n không chia hết cho 5 và 7 => n không chia hết cho 35
Vì n không chia hết cho 35 nên n có dang 35k+r (k, r thuộc N; n<35)
- các số nhỏ hơn 35 mà chia 7 dư 5 là: 5;12;19;26;33
-trong các số trên chỉ có 26 chia 5 dư 1.
Vậy số tự nhiên n nhỏ nhất chia 5 dư 1, chia 7 dư 5 là số 26( có dạng 35k+36)
Bài giải
Theo đề bài, ta có:
3698 : a = b (dư 26) và 736 : a = c (dư 56) (a < 100)
Ta thấy:
\(\Rightarrow ba+26=3698\)
\(\Rightarrow ba=3698-26\)
\(\Rightarrow ba=3672\) (*)
Ta thấy:
\(\Rightarrow ca+56=736\)
\(\Rightarrow ca=736-56\)
\(\Rightarrow ca=680\) (**)
Từ (*) và (**) \(\Rightarrow a\in\) ƯCLN(3672; 680) và a < 100
Ta có: \(3672=2^3.3^3.17\)
\(680=2^3.5.17\)
\(\Rightarrow\) ƯCLN(3672; 680) = \(2^3.17\) = 136
Theo đề bài, ta có \(a\in\) ƯCLN(3698; 680) và a < 100
\(\Rightarrow\) Không có số tự nhiên a thỏa mãn
Gọi x là số cần tìm (x ∈ ℕ*)
x + 1 = BCNN(2; 3; 4; 5; 6)
Ta có:
2 = 2
3 = 3
4 = 2²
5 = 5
6 = 2.3
⇒ x + 1 = BCNN(2; 3; 4; 5; 6) = 2².3.5 = 60
⇒ x = 60 - 1
⇒ x = 59
Vậy số cần tìm là 59
a) Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.
BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.Do đó x = 60n - 2 (n = 1, 2, 3, ...).Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 11. Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 7 thì x = 418 chia hết cho 11Gỉai :
Số chia cho 36 dư 25 có dạng :
36 . k + 25
Trong tổng trên, vì 36 chia hết cho 9 nên ( 36 . k ) cũng chia hết cho 9. Vậy số dư của tổng trên khi chia cho 9 là số dư của số hạng thứ hai ( số 25 ) chia cho 9
25 chia cho 9 được 2 dư 7
Vậy số đã cho chia cho 9 dư 7
0
đáp án ko phải là 0