K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

Ta có:1093=1295029 đồng dư với 1(mod 7)

=>(1093)115=109345 đồng dư với 1115(mod 7)

=>109345 đồng dư với 1 (mod 7)

=>109345 chia 7 dư 1

24 tháng 7 2016

A = 2 + 2 +  2+....+ 299​

   = (2 + 22 + 23) + .... + (297 + 298 + 299)

   = 2.(1 + 2 + 4) + .... + 297.(1 + 2 + 4)

   = 2.7 + ..... + 297.7

   = 7.(2 + .... + 297) chia hết cho 7

24 tháng 7 2016

A=2+22+23+...+299

A=2(1+2+4)+23(1+2+4)+25(1+2+4)+...+297(1+2+4)

A=2.7+23.7+25.7+...+297.7

A=7(2+23+25+27+...+297)

nên biều thức trên chia hết cho 7

A=2+22+23+...+299

A=2(1+2+4+8+16)+25(1+2+4+8+16)+....+295(1+2+4+8+16)

A=2.31+25.31+...+295.31

A=31(2+25+...+295)

vậy A chia hết cho 31 nên số dư của 31 chia A là 0

17 tháng 11 2019

1093≡1(mod7)

⇒109(3k+r)≡109r(mod7)\Rightarrow109^{\left(3k+r\right)}\equiv109^r\left(mod7\right)⇒109(3k+r)≡109r(mod7)

Mà: 345 = 0 (mod 7)

⇒109345=109(3.115+0)≡1090=1(mod7)\Rightarrow109^{345}=109^{\left(3.115+0\right)}\equiv109^0=1\left(mod7\right)⇒109345=109(3.115+0)≡1090=1(mod7)

⇒109345:7\Rightarrow109^{345}:7⇒109345:7dư 1

Quên cách giải của lớp 6 lên ko bik có đúng ko :)>

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

7 tháng 2 2017

 cau 1 minh ra 6

8 tháng 2 2017

Cau 1 ra d­u 6 . minh hoc rui day la bai dong du