Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
(x + 3 ) (x+5)(x+7)(x+9) + 2033
= ( x2 + 12x + 27 ) (x2 + 12x + 35 ) + 2033
đặt x2 + 12x + 30 = a
Khi đó : (a - 3 ) ( a + 5 ) + 2033
= a2 + 2a - 15 + 2033
= a2 + 2a + 2018
Vậy số dư là 2018
chả khác j câu này : https://hoc24.vn/hoi-dap/question/228443.html
a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)
\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)
\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)
b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6
b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0
=>m=-5 hoặc m=4/17
HD
Ghép tạo thừa số (x+1)
làm đi không làm dduocj mình mới làm chi tiết
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
Ta có: \(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+2028\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2028\)
Đặt: \(x^2+8x+12=t\) ta có: \(x^2+8x+7=t-5\) và \(x^2+8x+15=t+3\)
Ta có: \(A=\left(t+3\right)\left(t-5\right)+2028=t^2-2t+2013\)chia t dư 2013
Vậy A chia x2 + 8x + 12 dư 2013
Lời giải:
$(x+1)(x+3)(x+5)(x+7)=[(x+1)(x+7)][(x+3)(x+5)]$
$=(x^2+8x+7)(x^2+8x+15)$
$=[(x^2+8x+12)-5][(x^2+8x+12)+3]$
$=(x^2+8x+12)^2+3(x^2+8x+12)-5(x^2+8x+12)-15$
$=(x^2+8x+12)^2-2(x^2+8x+12)-15$
$\Rightarrow (x+1)(x+3)(x+5)(x+7)$ chia $x^2+8x+12$ dư $-15$
Ta có: \(\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)+2033\)
\(=\left[\left(x+3\right)\left(x+9\right)\right]\left[\left(x+5\right)\left(x+7\right)\right]+2033\)
\(=\left(x^2+12x+27\right)\left(x^2+12x+35\right)+2033\)
\(=\left(x^2+12x+31-4\right)\left(x^2+12x+31+4\right)+2033\)
\(=\left(x^2+12x+31\right)^2-4^2+2033\)
\(=\left(x^2+12x+31\right)^2+2017\)
\(=\left(x^2+12x+31\right)^2-1^2+2018\)
\(=\left(x^2+12x+31-1\right)\left(x^2+12x+31+1\right)+2018\)
\(=\left(x^2+12x+30\right)\left(x^2+12x+32\right)+2018\)
Vì \(\left(x^2+12x+30\right)⋮\left(x^2+12x+30\right)\)
\(\Rightarrow\left(x^2+12x+30\right)\left(x^2+12x+32\right)⋮\left(x^2+12x+30\right)\)
\(\Rightarrow\left[\left(x^2+12x+30\right)\left(x^2+12x+32\right)+2018\right]:\left(x^2+12x+30\right)\) dư \(2018\)
\(\Rightarrow\left[\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)+2033\right]:\left(x^2+12x+30\right)\)dư \(2018\)
Vậy số dư của phép chia\(\left(x+3\right)\left(x+5\right)\left(x+7\right)\left(x+9\right)+2033\)cho \(x^2+12x+30\)là \(2018\)