K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

a= a . a

Nếu a chia hết cho 3 ; 4 ; 5

=> a2 chia hết cho 3 ; 4 ; 5

Nếu a không chia hết cho 3 ; 4  ;5

=> a2 ko chia hết cho 3 ; 4 ; 5 và số dư bằng số dư của a khi chia cho 3 ; 4 ; 5

21 tháng 11 2020

1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 .                                                                                                  2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6.                                                                                      Mình ko chắc đâu nha!!!

22 tháng 11 2020

câu 1 sai đề đúng ko bạn

phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23

22 tháng 12 2021

tôi làm luôn nhé ko ghi đề bài

A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)

A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)

A=2+2^2.7+...+2^99.7

A=2+(2^2+...+2^99).7 ko chia hết cho 7 

Vậy A :7 thì dư 2

1 tháng 8 2015

Gọi số đó là a đk a thuộc N a là nhỏ nhất

Theo đề bài ta có

a:3 dư 1 suy ra a-1chia hết cho 3

a:4 dư 1 suy ra a-1 chia hết cho 4

a:5 dư 1 suy ra a-1 chia hết cho 5

Vậy suy ra a-1 là BC(3,4,5)

BC(3,4,5)={0;60;120;180;240;300;....}

ta có a-1=300 thì số đó chai hết cho 7

a=1+300

a=301

Vậy số đó là 301

 

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

3 tháng 1 2021

giúp mik nhé các bạn

1 tháng 1 2017

2+2^3 + 2^5 +2^7 + 2^9 +......+ 2^2013 chia 5 dư2