K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

Ta có 27 chia 13 bằng 2 dư 1

Xét: \(13k+1\) chia cho 13 sẽ dư 1

Ta có \(\left(13k+1\right)^2=\left(13k+1\right)\left(13k+1\right)=13^2k^2+26k+1\) và chia 13 dư 1

\(\Rightarrow\)Một số chia cho 13 dư 1 dù có nâng lên lũy thừa bao nhiêu thì chia cho 13 vẫn dư 1

\(\Rightarrow\) Số dư của 27^38 khi chia cho 13 là 1

2 tháng 2 2017

389 : 13 = 29 ( dư 12 )

Ủng hộ nha

2 tháng 2 2017

389 = 389

389 : 13 = 29 ( dư 12 )

dư 12 nha bn

11 tháng 8 2016

Gọi số tự nhiên cần tìm là a 

Do a chia 29 dư 5; chia 31 dư 27

=> a = 29.m + 5 = 31.n + 27 (m,n thuộc N*)

=> 29.m = 31.n + 22

=> 29.m = 29.n + 2.n + 22

=> 29.m - 29.n = 2.n + 22

=> 29.(m - n) = 2.n + 22

=> 2.n + 22 chia hết cho 29

Mà a nhỏ nhất => n nhỏ nhất => 2.n + 22 nhỏ nhất; 2.n + 22 là số chẵn

=> 2.n + 22 = 58

=> 2.n = 58 - 22 = 36

=> n = 36 : 2 = 18

=> a = 31.18 + 27 = 585

Vậy số cần tìm nhỏ nhất là 585

19 tháng 8 2021

Câu 4.Tìm số dư khi chia 27^995 cho 24             XIN HÃY HỘ TÔI

 

gọi snt nhỏ nhất cần tìm là a ( a thuộc N*)

vì khi chia a cho 11 dư 5

=> a chia hết cho 11- 5

=> a thuộc B( 6) 

vì a chia 13 dư 8

=> a chia hết cho 13 - 8

=> a thuộc B( 5)

=> a thuộc Bc( 5;6)

vì 5 ; 6 là 2 snt cùng nhau

=> BC(5;6)= { 0; 30; 60;120;...}

mà a là snt nhỏ nhất có 3 cs

=> a= 120

vậy.....

26 tháng 8 2019

Vì a nhỏ nhất => a+ 6 nhỏ nhất

Theo bài ra => a+ 6 chia  hết cho 11; a+ 6 chia hết cho 13; a+ 6 nhỏ nhất => a+ 6 là BCNN (11; 13)

11= 11; 13= 13

BCNN (11; 13)= 11. 13= 143

=> a+ 6= 143 => a= 137

Vậy => a= 137

Gọi số tự nhiên nhỏ nhất có 3 chữ sốcần tìm là a

Tao có: + a : 11 dư 5 => a=11m+5 => a+6=(11m+5)+6 = 11m+11=11(m+1) \(⋮\)11 (\(m\in N\))

Vì 77 \(⋮\)11 => (a+6)+77 \(⋮\)11 => (a+83) \(⋮\)11                                                  (1)

             + a : 13 dư 8 => a=13n+8 => a+5=(13n+8)+5 = 13n+13=13(n+1) \(⋮\)11  (\(n\in N\))

Vì 78 \(⋮\)13 => (a+5)+78 \(⋮\)13 => (a+83) \(⋮\)13                                                 (2)

Từ (1) & (2) => a+83 \(⋮\)BCNN(11;13) => a+83 \(⋮\)143 => a=143k-83  (k \(\in\)N*)

Để a đạt giá trị nhỏ nhất ta chọn : k=2 => 143.2-83=203

Vậy a=203

      

17 tháng 4 2022

tìm số dư của 2020^2021+2021^2020 chia cho 13
=> dư 1

17 tháng 4 2022

+/ 2020 ≡ 5 mod 13 -> 2020^2021 ≡ 5^2021 mod 13 (1)
ta có 5^2020 = 5^(2x1010) = 25^1010 ≡ 25 mod 13, mà 25 ≡ 12 mod 13 (25 chia 13 dư 12)
-> 5^2020 = 25^1010 ≡ 12 mod 13
-> 5^2021 = 5^2020 x 5 ≡ 12 x 5 mod 13 
<-> 5^2021 = 5^2020 x 5 ≡ 60 mod 13, mà 60  ≡ 8 mod 13 ( 60 chia 13 dư 8)
-> 5^2021 ≡ 8 mod 13 (2)
từ (1), (2) => 2020^2021 ≡ 8 mod 13 hay 2020^2021 chia 13 dư 8 (*)
+/ 2021 ≡ 6 mod 13 -> 2021^2020  ≡ 6^2020 mod 13 (3)
6^2020=6^(2x1010) ≡ 6 mod 13 (4)
từ (3), (4) -> 2021^2020  ≡ 6 mod 13 hay 2021^2020 chia 13 dư 6 (**)

từ (*), (**)
-> 2020^2021+2021^2020 ≡ 8 + 6 mod 13
<-> 2020^2021+2021^2020 ≡ 14 mod 13, mà 14 ≡ 1 mod 13 ( 14 chia 13 dư 1)
-> 2020^2021+2021^2020 ≡ 1 mod 13, hay 2020^2021+2021^2020 chia 13 dư 1
Vậy 2020^2021+2021^2020 chia 13 dư 1