![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi g(x) là thương phép chia
số dư có dạng ax+b
đặt x^99 + x^55 + x^11 + 7 = f(x)
ta có
f(x) = g(x) . (x^2 - 1) +ax+b
x = 1
=> f(1) = g(1) . (1^2 - 1) + a+b
11 = a+b
x=-1
=> f(-1) = g(-1) . (-1^2 - 1) -a+b
=> 3 = -a+b
ta có
a+b = 11
b-a = 3
=> 2a = 8
=> a=4
b=7
thương phép chia là 4a+7
![](https://rs.olm.vn/images/avt/0.png?1311)
Không biết bạn đã học khai triển Newton chưa nhỉ?
Áp dụng khai triển Newton ta có:
\((12+\sqrt{7})^{22}+(12-\sqrt{7})^{22}=\sum_{k=0}^{22}C_{22}^{k}(\sqrt{7})^k.12^{22-k}+\sum _{k=0}^{22}C_{22}^{k}(-\sqrt{7})^k12^{22-k}\)Rõ ràng là với $k$ chạy trên tập số lẻ thì các số hạng có số mũ lẻ tự triệt tiêu cho nhau. Với $k$ chạy trên tập số chẵn và $k<22$ thì mỗi số \((\pm \sqrt{7})^k12^{22-k}\) đều là số nguyên chia hết cho $6$. Do đó, nếu gọi tổng trên là $P$ thì \(P\equiv (\sqrt{7})^{22}+(-\sqrt{7})^{22}=2.7^{11}\equiv 2\pmod 6\)
Vậy \((12+\sqrt{7})^{22}+(12-\sqrt{7})^{22}\equiv 2\pmod 6\).
Bài toán này có thể tổng quát cho trường hợp mũ $n$ với $n$ chẵn
Oops xin lỗi hôm nay mới check lại hóa ra mình bị nhầm $2016$
![](https://rs.olm.vn/images/avt/0.png?1311)
sữa lại câu cuối cho Nhã Doanh
\(\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{22-2\sqrt{21}-\sqrt{\left(\sqrt{21}+1\right)^2}}\)
\(=\sqrt{22-2\sqrt{21}-\sqrt{21}-1}=\sqrt{21-3\sqrt{21}}\)
\(a.\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
\(b.\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)
\(c.\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)\(d.\sqrt{22-2\sqrt{21}-\sqrt{22+2\sqrt{21}}}=\sqrt{\left(\sqrt{21}-1\right)^2-\sqrt{\left(\sqrt{21}+1\right)^2}}=\sqrt{21}-1-\sqrt{\sqrt{21}+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a=\sqrt[3]{55+\sqrt{3024}}+\sqrt[3]{55-\sqrt{3024}}\Leftrightarrow a^3=110+3.\sqrt[3]{55^2-3024}.a\Leftrightarrow a^3=3a+110\)
\(\Rightarrow a^3-3a-110=0\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\Leftrightarrow a=5\)(vì a2+5a+22>0)
Thay a vào P để tính.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm giá trị lớn nhất của \(\frac{2020-x}{6-x}\)
Ta có : \(\frac{2020-x}{6-x}=\frac{6-x+2014}{6-x}=\frac{6-x}{6-x}+\frac{2014}{6-x}=1+\frac{2014}{6-x}\)
Đa thức lớn nhất \(\Leftrightarrow1+\frac{2014}{6-x}\)lớn nhất \(\Rightarrow\frac{2014}{6-x}\)lớn nhất \(\Rightarrow6-x\)nhỏ nhất và \(6-x>0\)
Mà \(x\in Z\)\(\Rightarrow x=5\)
Vậy giá trị lớn nhất của đa thức \(=\frac{2020-5}{6-5}=2020-5=2015\)\(\Leftrightarrow x=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
Ta có:
\(22\equiv1\left(mod7\right)\Leftrightarrow22^{22}\equiv1\left(mod7\right)\)(1)
Mặt khác \(55\equiv6\left(mod7\right)\Leftrightarrow55^{55}\equiv6^{55}\left(mod7\right)\)
Mà \(6^2\equiv1\left(mod7\right)\)(2)
tách: \(6^{55}=6^{2.27+1}=\left(6^2\right)^{27}.6\equiv1^{27}.6=6\)(từ (2) ) (3)
Từ (1) và (3) suy ra \(22^{22}+55^{55}\) chia 7 dư 0
2) Ta có:
\(3^6\Leftrightarrow1\left(mod7\right)\)
tách: \(3^{1993}=3^{6.332+1}=\left(3^6\right)^{332}.3\equiv1^{332}.3=3\)(mod 7)
Vậy \(3^{1993}\) chia 7 dư 3