Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Số có 5 chữ số khác nhau sắp xếp theo chiều tăng dần từ tập số 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 là: . C 7 5
Số có 5 chữ số khác nhau sắp xếp theo chiều tăng dần từ tập số 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 có a = 0 là: 1 C 6 4 = C 6 4 .
Vậy số các chữ số cần tìm theo yêu cầu của đề bài là: C 7 5 - C 6 4 .
Chọn B.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Lời giải:
Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ
Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$
$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ
Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$
Ta có đpcm
AN chính là đường thẳng AB nên AB: x-2y-2=0.
AD qua M(3/2;-3/2) và vuông góc với AB nên AD: 2x+y-3/2=0. Suy ra A(1;-1/2)
Vì M là trung điểm AD nên D(2;-5/2) suy ra BC=AD=\(\sqrt{5}\), suy ra AB=3BC=3\(\sqrt{5}\)
B(2b+2;b) nên
\(AB=\sqrt{(2b+1)^2+(b+1/2)^2}=\dfrac{\sqrt{5}}{2}|2b+1|=3\sqrt{5}\Rightarrow b=\dfrac{5}{2}\) hoặc \(b=-\dfrac{7}{2}\)
Nếu \(b=\dfrac{5}{2}\) thì B(7;5/2). Do \(\overrightarrow{BC}=\overrightarrow{AD}=(1;-2)\) nên C(8;-1/2) (thỏa mãn)
Nếu \(b=-\dfrac{7}{2}\) thì B(-5;-7/2). Do \(\overrightarrow{BC}=\overrightarrow{AD}=(1;-2)\) nên C(-4;-11/2) (loại)
Đặt BC=a, suy ra AB=3a.
$S_{MNC}=S_{ABCD}-S_{AMN}-S_{BNC}-S_{DMC}=3a^2-\dfrac{a^2}{4}-a^2-\dfrac{3a^2}{4}=a^2$
$CN=a\sqrt{5}$ nên $d(M,CN)=\dfrac{2S_{MNC}}{CN}=\dfrac{2a}{\sqrt{5}}$
Mặt khác $d(M,CN)=\dfrac{4}{\sqrt{10}}$ nên $a=\sqrt{2}$
Suy ra $MC=\dfrac{a\sqrt{37}a}{2}=\dfrac{\sqrt{74}}{2}$
Gọi C(3c+2;c) (3c+2>0) thì
$MC^2=(3c+1/2)^2+(c+3/2)^2=\dfrac{74}{4}\Leftrightarrow (6c+1)^2+(2c+3)^2=74$
$40c^2+24c-64=0$ nên c=1 hoặc c=-8/5(loại) nên C(5;1)
+ Tương tự tìm được N từ việc N thuộc CN, $MN=\dfrac{a\sqrt{5}}{2},CN=a\sqrt{5}$
+ Sau khi tìm được N ta tìm được E từ việc M là trung điểm CE
+ Tọa độ A, B xác định qua hệ thức véc tơ: vecto(EA)=3.vecto(AN); vecto(AN)=2vecto(NB)
+ Tọa độ D xác định từ việc M là trung điểm AD.
Số lớn nhất có 4 chữ số chia hết cho 3 và có tận cùng là 5 là: 9975
Số nhỏ nhất có 4 chữ số chia hết cho 3 và có tận cùng là 5 là: 1005
Khoảng cách của dãy là 30(1005,1035,1065,...,9945,9975.
Số số tự nhiên có 4 chữ số tận cùng là 5 chia hết cho 3 là:
(9975-1005):30+1=300(số)
Vậy có tất cả 300 số tự nhiên có 4 chữ số có tận cùng là 5 và chia hết cho 3/
câu dễ thế mà cũng phải hỏi à hải anh.
ai giúp mk đi mà mk tick cho tick cho 2 tick luôn