Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi abc là số tự nhiên phải tìm.
Theo đầu bài ta có:
abc = bc x 7
c x 7 = c nên c chỉ có thể là 0 hoặc 5
* Nếu c = 0 thì bc x7 = ab0
b x 7 = b thì b chỉ có thể là 5
Vậy abc = bc x 7 = 50 X 7 = 350
* Nếu c = 5 thì b5 x 7 ta có:
5 x 7 = 35; viết 5 nhớ 3
b x 7 + 3 không tìm được kết quả có chữ số hàng đơn vị là b. Vì vậy c không thể là 5.
Do đó :
c = 0
b = 5
a = 3
Số phải tìm là 350
Gọi abc là số tự nhiên phải tìm.
Theo đầu bài ta có:
abc = bc x 7
c x 7 = c nên c chỉ có thể là 0 hoặc 5
* Nếu c = 0 thì bc x7 = ab0
b x 7 = b thì b chỉ có thể là 5
Vậy abc = bc x 7 = 50 X 7 = 350
* Nếu c = 5 thì b5 x 7 ta có:
5 x 7 = 35; viết 5 nhớ 3
b x 7 + 3 không tìm được kết quả có chữ số hàng đơn vị là b. Vì vậy c không thể là 5.
Do đó :
c = 0
b = 5
a = 3
Số phải tìm là 350
Khi xóa chữ số \(3\)ở hàng trăm của số có ba chữ số thu được số mới kém số ban đầu \(300\)đơn vị.
Nếu số mới là \(1\)phần thì số cần tìm là \(7\)phần.
Hiệu số phần bằng nhau là:
\(7-1=6\)(phần)
Số cần tìm là:
\(300\div6\times7=350\)
Bạn ơi đề bài này bị thiếu. Phải cho biết hiệu hoặc tổng thì mới tính đc bạn nhé
Nhưng bạn ơi đề này ko thiếu đâu nhé
Mình xem đi xem ại rồi
Gọi số cần tìm là abc
ta có \(abc=5\times bc\)hay ta có : \(a\times100=4\times bc\text{ hay }a\times25=bc\)
vậy hoặc bc =25 hoặc bc =50 hoặc bc =75
vậy ta có các số thỏa mãn là :
\(125,250,375\)
Gọi số cần tìm là abc (b,c ∈ N ; a ∈ N*)
Vì khi xóa đi chữ số hàng trăm của một số tự nhiên có 3 chữ số thì số đó giảm đi 5 lần
......~> 5.bc = abc
....<~> 5.bc = 100.a + bc
....<~> 4.bc = 100.a
....<~> bc = 25.a
mà bc là số có 2 chữ số và 25.a lớn nhất là 99
~> a ∈ { 1;2;3 }
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 1
......~> bc = 25
......~> số cần tìm abc là 125
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 2
......~> bc = 25.2 = 50
......~> số cần tìm abc là 250
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 3
.......~> bc = 25.3 = 75
.......~> số cần tìm abc là 375
Do đó 125 hoặc 250 hoặc 375 là các số cần tìm
Đây theo cách mik nghĩ là như thế này
Gọi \(\overline{abc}\)là số cần tìm
Theo đề bài, ta có:
\(\overline{abc}=\overline{bc}\cdot5\)
Ta nhận thấy \(\overline{bc}\)có chữ số tận cùng là c
Mà \(\overline{abc}\)cũng có chữ số tận cùng là c
Do đó có 2 Trường hợp
TH1: c có giá trị là 0
Khi c có giá tri là 0 thì \(5b=\overline{ab}\)( với \(b\ne0\)) (1)
Từ (1), b có giá trị là 2. Suy ra số cần tìm là 250
TH2: c có giá trị là 5
Khi c có giá trị là 5 thì: \(5b+2=\overline{ab}\)( với \(b\ne0\)) Loại bỏ trường hợp \(b=2\)
Ta thấy \(5b\)có chữ số tận cùng là 0 khi b là số chẵn Suy ra \(5b+2\)có chữ sô tận cùng là 2 (loại vìđã có trường hợp b=2)
Ta lại thất \(5b\)có chữ số tận là 5 khi b là số lẻ suy ra \(5b+2\)có chữ số tận cùng là 7(nhận)
Suy ra số cần tìm là 375
Vậy các số cần tìm là 375 và 250
Hết