K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

bai toan nay kho 

7 tháng 2 2016

a.Đặt n2+2006=a2(a\(\in\)Z)

=>2006=a2-n2=(a-n)(a+n) (1)

Mà (a+n)-(a-n)=2n chia hết cho 2

=>a+n và a-n có cùng tính chẵn lẻ 

+ TH1:a+n và a-n cùng lẻ => (a-n)(a+n) lẻ, trái với (1)

+ TH2 :a+n và a-n cùng chẵn => (a-n)(a+n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b.Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n=3k+1 hoặc n=3k+2 (k\(\in\)N*)

+ n=3k+1 thì n2+2006=(3k+1)2+2006=9k2+6k+2007 chia hết cho 3 và lớn hơn 3

=>n2+2006 là hợp số

+ n=3k+2 thì n2+2006=(3k+2)2+2006=9k2+12k+2010 chia hết cho 3 và lớn hơn 3

=>n2+2006 là hợp số

Vậy n2+2006 là hợp số

đặt n^2+2006=a^2

=>2006=a^2-n^2

=>2006=(a-n)(a+n)

vì tích của a-n và a+n là 1 số chẵn nên trong 2 số sẽ có ít nhất 1 số chẵn (1)

mặt khác: a-n+(a+n)=2a là 1 số chẵn=> a-n và a+n phải cùng tính chẵn lẻ(2)

từ (1) và(2) suy ra a-n và a+n là 2 số chẵn

đặt a-n=2x;a+n=2y(x,y thuộc Z)

=>(a-n)(a+n)=2x.2y

=>2x.2y=2006

=>4xy=2006

vì x,y là số nguyên nên 2006 phải chia hết cho 4(vô lí, vì 2006 ko chia hết cho 4)

vậy ko tồn tại số nguyên n để n^2+2006 là 1 số chính phương

2/ vì n là số nguyên tố lơn hơn 3 nên n ko chia hết cho 3=>n có dạng 3k+1;3k+2

+) nếu n=3k+1

=>n^2+2006=(3k+1)^2+2006=9k^2+6k+2007 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số

+)nếu n=3k+2

=>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số

vậy n^2+2006 là hợp số với n>3

tick nha

28 tháng 1 2016

ko

31 tháng 1 2016

a) vì n là số nt > 3 nên n là số lẻ

=> n2 là số lẻ => n2 là hợp số (1)

mà 2006 > 2 => 2006 là hơp số (2)

=> n2+ 2006 là hợp số

KL: n+2006 là hợp số

1 tháng 2 2016

n là số nguyên tố lớn hơn 3 => n=3k+1 hoặc n=3k+2  (k la so tu nhien)

Nếu n=3k+1 => n^2+2006=(3k+1)^2+2006=9k^2+6k+1+2006=9k^2+6k+2007 =3(3k^2+2k+669) chia hết cho 3 và >3 nên là hop so

Nếu n=3k+2 =>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010  chia hết cho 3 và > 3 nen là hop so

 

 

bài 2

 

n^2+2006=a^2  => 2006=a^2-n^2=(a-n)(a+n)

ta co n-a-(n+a)=-2a là số chẵn nên a-n và a+n cùng tính chẵn lẻ

ta thấy 2006 là số chẵn nên a-n và a+n cùng chẵn nên (a+n)(a+n) chia hết cho 4 mà 2006 ko chia hé t cho 4 nên ko có x

1 tháng 7 2015

http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf Mình tặng bạn nhé!! ^^

1 tháng 7 2015

http://hocmai.vn/file.php/389/Bai_tap_tu_luyen/De_thi_HSG/Dap_an_De_thi_HSG_lop_6_so_1.pdf

31 tháng 3 2016

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

31 tháng 3 2016

b)

Đặt n2 + 2006 = a2 (a $∈$∈Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$∈$∈N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

a)

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

11 tháng 1 2016

N2 + 6 hay n2 + 2006 

11 tháng 1 2016

a) Đặt n2 + 2006 = a2

a2 - n2 = 2006

(a - n)(a + n) = 2006

Nếu a,n khác tính chẵn lẻ thì (a - n)(a + n) lẻ => Loại

Nếu a,n cùng tính chẵn lẻ thì (a - n)(a+  n) chia hết cho 4

Mà 2006 không chia hết cho 4 => Loại

Vậy không có số n thõa mãn

b) Nếu n là số nguyên tố > 3 

=> n chia 3 dư 2 hoặc n chia 3 dư 1

=> n2 chia 3 dư 1 => n2 + 2006 chia hết cho 3

Vậy n2 + 2006 là hợp số