Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phải tim là Aab
ta có A = k^2 suy ra 100 A =(10k)^2 (1)
Aab=q^2 (2)
Lấy (2) - (1) ta có:
ab = q^2 - (10k)^2 = (q - 10k)(q + 10k)
Nhận xét: Nếu đặt (q - 10k) = m
thì (q + 10k) = m +20k
Do đó ab = m(m+20k)
Dùng chặn sẽ ra
mk ko bt có đúng ko đâu
Gọi số phải tìm là a^2. Sau khi xóa ta đc b^2.
theo đầu bài ta xóa 2 CS cuối nghĩa là a^2 = 100* b^2 + D ( trong đó D là một số có 2 CS)
<=> a^2 - 100*b^2 = D
<=> (a-10b)(a+10b) = D
Ta có vài nhận xét sau:
1) a^2 phải có ít nhất 3CS ( để còn xóa đc 2CS cuối^^)
2)a-10b>0
3) a+10b <100
Suy ra
b chỉ có thể bằng 1,2,3,4
( nếu b=5 thì đồng thời a>50 và a<50
b=6 thì đồng thời a>60 và a<40....
làm gì có )
TH1: b=4
=> a có dạng 16xx && 40<a<60
=> 1600<a^2<3600
=> chỉ có số 1681=41^2 thỏa mãn
TH2: b=3
=> a có dạng 9xx && 30<a<70
=> 900<a^2<4900
=>chỉ có 31^2 = 961 thỏa mãn
TH3: b=2
=>...thật ra không cần phải xét vì đầu bài yêu càu tìm sồ lớn nhất thôi. Các số trong các TH dưới đều có 3CS. Chỉ có TH 1 có 4CS
Nên: Số lớn nhất cần tìm là 1681
Gọi số tự nhiên phải tìm là abcd(a,d\(\ne\)0; a,b,c,d <10)
Vì số chính phương có 4 chữ số có 2 chữ số đầu và 2 chữ số cuối ( không đổi thứ tự các chữ số) tạo thành 2 số chính phương
=> ab và cd à 2 số chính phương.
TH1: Nếu ab=cd, mà ab và cd là 2 số chính phương
=>ab\(\in\){ 16; 25;36;49;64;81}
cd\(\in\){16;25;36;49;64;81}
Ta được các số 1616;2525;3636;4949;6464;8181
Ta thấy: 1616;2525;4949;6464 chia cho 3 đều dư 2( do 1+6+1+6; 2+5+2+5;4+9+4+9;6+4+6+4 đều chia cho 3 dư 2)
Mà số chính phương chia cho 3 dư 0 hoặc 1
=> 4 số trên đều không phải là số chính phương
TH2: Nếu ab\(\ne\)cd; mà cd và ab là 2 số chính phương
=> Ta lập được các số
1625;2516; 3616; 4916;6416;8116
1636; 2536;3625;4925;6425;8125
1649; 2549;3649;4936;6436;8136
1664;2564;3664;4964;6449;8149
1681 ; 2581; 3681;4981;6481;8164
Mà số chính phương chia cho 3 dư 0;1
=>Các số 1625;1664;1649;2516;2549;2564;4916;4925; 4964;6416;6425;6449 không phải là số chính phương.
Sau đó phân ích các số còn lại ra thừa số nguyên tố rồi thử chọn
giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
bạn vào link này nhé
https://olm.vn/hoi-dap/question/897511.html
Tỉm một số chính phương có bốn chữ số sao cho hai chữ số đầu giống nhau , hai chữ số cuối giống nhau
Bài 1:
Gọi số cần tìm là x; số sau là y2, ta có:
35x = y2
Mà 35 = 5 . 7, x ko thể = 5 hoặc 7
=> Số đó = 35
Bài 2:
Giả sử aabb = n2
<=> a . 103 + a . 102 + a . 10 + b = n2
<=> 11(100a + b) = n2
<=> n2 chia hết cho 11
<=> n chia hết cho 11
Do n2 có 4 chữ số nên: 32 < n < 100
=> n = 33; n = 44; n = 55; ...; n = 99
Thử n = 88 (TMYK)
=> Số đó là: 7744
Bài 1 :
Gọi số phải tìm là n ,ta có \(135n=a^2\left(a\in N\right)\)hay \(3^3.5.n=a^2\)
Vì số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn nên \(n=3.5.k^2\left(k\in N\right)\)
Vì n là số có 2 chữ số nên \(10\le3.5.k^2\le99\Rightarrow k^2\in\left(1,4\right)\)
- Nếu \(k^2=1\)thì \(n=15\)
-Nếu \(k^2=4\)thì \(n=60\)
Vậy số cần tìm là 15 hoặc 60
Bài 2 :
Gọi số chính phương cần tìm là \(n^2=aabb\left(a,b\in N\right)\)và \(\left(1\le a\le9,0\le b\le9\right)\)
Ta có \(n^2=aabb=1100a+11b=11\left(99a+a+b\right)\left(1\right)\)
\(\Rightarrow\left(99a+a+b\right)⋮11\Rightarrow\left(a+b\right)⋮11\Rightarrow a+b=11\)
Thay \(a+b=11\)vào (1)ta được \(n^2=11\left(99a+11\right)=11^2\left(9a+1\right)\)
\(\Rightarrow9a+1\)phải là số chính phương
a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
9a+1 | 10 | 19 | 28 | 37 | 46 | 55 | 64 | 73 | 82 |
Ta thấy chỉ có \(a=7\)thì \(9a+1=64=8^2\)
Vậy \(a=7\Rightarrow b=4\)và số cần tìm là \(7744=11^2.8^2=88^2\)
Chúc bạn học tốt ( -_- )
Số tự nhiên có hai chữ số, mà biết nó bình phương của số đó là một số có bốn chữ số mà hai chữ số cuối cùng là chính là số đó. Số đó là: 76^2=5776
tick nha bạn
Gọi số phải tìm là a^2. Sau khi xóa ta đc b^2.( Minh chỉ đưa ra kết quả nếu nó là số lớn nhất nên đừng nhầm)
theo đầu bài ta xóa 2 CS cuối nghĩa là a^2 = 100* b^2 + D ( trong đó D là một số có 2 CS)
<=> a^2 - 100*b^2 = D
<=> (a-10b)(a+10b) = D
Ta có vài nhận xét sau:
1) a^2 phải có ít nhất 3CS ( để còn xóa đc 2CS cuối^^)
2)a-10b>0
3) a+10b <100
Suy ra
b chỉ có thể bằng 1,2,3,4
( nếu b=5 thì đồng thời a>50 và a<50
b=6 thì đồng thời a>60 và a<40....
làm gì có )
TH1: b=4
=> a có dạng 16xx && 40<a<60
=> 1600<a^2<3600
=> chỉ có số 1681=41^2 thỏa mãn
TH2: b=3
=> a có dạng 9xx && 30<a<70
=> 900<a^2<4900
=>chỉ có 31^2 = 961 thỏa mãn
TH3: b=2
=>...thật ra không cần phải xét vì đầu bài yêu càu tìm sồ lớn nhất thôi. Các số trong các TH dưới đều có 3CS. Chỉ có TH 1 có 4CS
Nên: Số lớn nhất cần tìm là 1681
cậu có tk đâu mà bảo giải? (lần trước giải mà cậu ko tk)