Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
218x515=23x215x515=23x1015=8x100..0(15 chữ số 0)=800...0(15 chữ số 0)
=>218x515 có 15 +1 = 16 chữ số
\(a,2^3.32\ge2^n>16\)
\(2^3.2^5\ge2^n>2^4\)
\(2^8\ge2^n>2^4\)
\(\Rightarrow n\in\left\{8;7;6;5\right\}\)
\(b,25< 5^n< 625\)
\(5^2< 5^n< 5^4\)
\(\Rightarrow n=3\)
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)
Vậy chữ số tận cùng của \(8^{4n+1}\) là 8
\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)
\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)
\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của tổng trên là 3
17^2012=(17^2)^1006=...9^1006=....1
11^2012=.....1
7^2012=(7^2)^1006=...9^1006=.....1
Ta có: .......1+......1-.....1=........1
Vậy chữ số tận cùng của tổng M là 1