Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có abba=1000a+100b+10b+a
=1001a+110b
=11( 91a+10b ) luôn chia hết cho 11
lại có abba được viết dưới dạng tích của 3 số nguyên liên tiếp mà trong đó phải có số 11
=> ta có các trướng hợp sau
+ tích của 3 số 5.7.11=385 loại
+ tích của 3 số 7.11.13=1001 thỏa mãn đề bài
+tích của 3 số 11.13.17=2431 loại
=> số thỏa mãn đề bài là 1001
Bài 2:
a: Trường hợp 1: p=3
=>p+2=5 và p+4=7(nhận)
Trường hợp 2: p=3k+1
=>p+2=3k+3=3(k+1) không là số nguyên tố
=>loại
Trường hợp 3: p=3k+2
=>p+4=3k+6=3(k+2) không là số nguyên tố
=>Loại
Vậy: p=3
b: Trường hợp 1: p=3
=>p+10=13 và p+14=17(nhận)
Trường hợp 2: p=3k+1
=>p+14=3k+15=3(k+5) không là số nguyên tố
=>Loại
Trường hợp 3: p=3k+2
=>p+10=3k+12=3(k+4) không là số nguyên tố
=>Loại
Vậy: p=3
mình chỉ ghi theo cách mình hiểu thôi nha.
Bài 1:
a, 46620=22.32.5.7.37
=4.9.5.7.37
=36.35.37
Vậy 46620=35.36.37
mình nghĩ câu B là số tự nhiên lẻ liên tiếp
b, 12075=3.52.7.23
=3.25.7.23
=21.25.23
Vậy 12075=21.23.25
nếu mình tích thì cậu bảo đó chính là lời giải vì mình tích đúng rồi. Mình không dễ bị lừa đâu ^-^
Bài 1: ba số tự nhiên lẻ liên tiếp đều là số nguyên tố là 3;5;7
Bài 1 :
Gọi 3 số đó là p ; p + 2 ; p + 4
+ Nếu p = 2 thì p + 2 = 2 + 2 = 4 là hợp số
+ Nếu p = 3 thì p + 2 = 3 + 2 = 5 ; p + 4 = 3 + 4 = 7 đều là số ng tố
Với p là số nguyên tố lớn hơn 3 thì p chỉ có dạng 3k + 1 hoặc 3k + 2
+ Nếu p = 3k + 2 thì p + 4 là hợp số ( loại )
+ Nếu p = 3k + 1 thì p + 2 là hợp số ( loại )
Vậy ba số ng tố đó là : 3 ; 5 ; 7
1. Ta có: trong 25 số nguyên tố có 1 số nguyên tố chẵn còn lại là 24 số nguyên tố lẻ. Tổng của 24 số lẻ là một số chẵn nên tổng của 25 số nguyên tố nhỏ hơn 100 là số chẵn.
ta có abba=1000a + 100b + 10b + a
=1001a+110b
=11( 91a+10b ) luôn chia hết cho 11
lại có abba được viết dưới dạng tích của 3 số nguyên liên tiếp mà trong đó phải có số 11
=> ta có các trướng hợp sau
+ tích của 3 số 5 . 7.11=385 loại
+ tích của 3 số 7.11.13=1001 thỏa mãn đề bài
+tích của 3 số 11.13.17=2431 loại
=> số thỏa mãn đề bài là 1001