Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a = BCNN(15;115) = 345
b, a – 1 ∈ BC(35;52) và 999 < a – 1 < 1999
Ta có BCNN(35;52) = 35.52 = 1820
Suy ra a – 1 ∈ {0;1820;3640;...}
Vì 999 < a – 1 < 1999 nên a – 1 = 1820
a = 1821
Gọi số cần tìm là:a
=>(a+2) chia hết cho 3;4;5;6
Vậy(a+2) là bội chung của 3;4;5;6
=>(a+2)=60k(k thuộc N)
Vì a chia hết cho 11 nên:
60k chia 11 dư 2
<=>55k+5k chi hết cho 11 dư 2
<=>5k chia 11 dư 2
<=>k chi cho 11 dư 7
=>k=11d+7(với d thuộc N)
=>Số cần tìm là:a=60k-2=60(11d +7)-2=660d+418(với d thuộcN)
k mik nha!
Tình bạn vĩnh cửu Phương Dung
Gọi số cần tìm là a
Ta có a chia 5 dư 3 => a = 5b + 3
<=> 2a = 10b + 6
2a-1 = 10b + 5 \(⋮\)5 ( 1 )
a chia 7 dư 4 => a= 7c +4
2a = 14c + 8 => 2a - 1 = 14b + 7 \(⋮7\)( 2 )
a chia 9 dư 5 => a = 9d + 5
<=> 2a = 18d + 10 => 2a -1 = 18d + 9 \(⋮9\)( 3 )
Từ ( 1 ); ( 2 ); ( 3 ) => 2a - 1 \(⋮\)5;7;9
Để a là STN nhỏ nhất thì 2a - 1 \(\in BCNN\left(5;7;9\right)\)= 5.7.9 = 315
=> 2a = 316 => a = 158.
b, Tương tự phần a.