K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

2x^3-3x^2+x+a x+2 2x^2-7x+15 2x^3+4x^2 -7x^2+x+a -7x^2-14x 15x+a 15x+30 a-30

Để \(2x^3-3x^2+x+a⋮x+2\) <=> a - 30 = 0 <=> a = 30

3: \(\Leftrightarrow a-15=0\)

hay a=15

16 tháng 8 2015

 

2x3-3x2+x+a  |  x+2

------------------|-------------

2x3-3x2        | 2x2-7x+15

2x2+4x2

      -7x2+x

      -7x2-14x

            15x+a

            15x+30

Để 2x^3-3x^2+x+a chia hết cho đa thức x+2 thì

15x+a=15x+30

<=>a=30

Vậy a= 30  

28 tháng 8 2016

gọi đa thức thứ 1 là A(x), thứ 2 là B(x), A(x):B(x)=Q(x)

-> A(x)=B(x).Q(x). Thay x= -2 có B(x)=0 -> A(-2)=0

2.(-2)^3 - 3.(-2)^2 + (-2) + a = 0

-30 + a = 0

a = 30

6 tháng 10 2021

Ta có 2x3 - 3x2 + x + a

= 2x3 + 4x2 - 7x2 - 14x + 15x + 30 + (a - 30) 

= 2x2(x + 2) - 7x(x + 2) + 15(x + 2) + (a - 30) 

= (x + 2)(2x2 - 7x + 15) + a - 30

Để (2x3 - 3x2 + x + a) \(⋮\)(x + 2)

=> a - 30 = 0

<=> a = 30

Vậy a = 30 

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1

16 tháng 8 2015

2x3-3x2+x+a

chứ

17 tháng 8 2019

Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại 

a)

  x^3 +ax+b x^2+2x-2 x-2 x^3+2x^2-2x - -2x^2+(a+2)x+b -2x^2-4x+4 - (a+2+4)x+(b-4)

Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)

Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

17 tháng 8 2019

b) dùng phương pháp xét giá trị riêng

Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)

Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)

\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)

\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)

                 \(=0\)

\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)

\(\Leftrightarrow8a+4b-40=0\)

\(\Leftrightarrow4\left(2a+b-10\right)=0\)

\(\Leftrightarrow2a+b=10\left(1\right)\)

Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)

                             \(=0\)

\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)

\(\Leftrightarrow-125a+25b-25-50=0\)

\(\Leftrightarrow-125a+25b-75=0\)

\(\Leftrightarrow25\left(-5a+b-3\right)=0\)

\(\Leftrightarrow-5a+b=3\left(2\right)\)

Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)

                                 \(\Leftrightarrow7a=7\)

                                 \(\Leftrightarrow a=1\)

Thay a=1 vào (1 ) ta được: b=8

Vậy a=1 và b=8