Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).
Do đó $p=3k+2$.
Khi đó:
$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)
với p=2 thì p+10=12 p+14=16 (loại)
với p=3 thì p+10=13 p+14=17 chọn vì là số nguyên tố
với p>3 thì p có dạng 3k+1 3k+2
với p có dạng 3k+1
=>p+14=3k+1+14=3k+15 chia hết cho 3( loại)
với p có dạng 3k+2
=>p+10=3k+2+10=3k+12 chia hết cho3( loại)
=> p=3
tick cho mình
Cac Snt >3 deu co dang 6k+1;6k+2;6k+3;6k+4;6k+5
Neu p=6k+2 thi chia het cho 2
Neu p= 6k+3thi chia het cho 3
Neu p =6k+4 thi chia het cho 2
Vay p chi co the =6k+1 hoac 6k+5