Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(a+1\inƯ\left(5a+12\right)\)nên:
\(\Rightarrow5a+12⋮a+1\)
\(\Rightarrow5.\left(a+1\right)+7⋮a+1\)
\(\Rightarrow7⋮a+1\)(vì \(5.\left(a+1\right)⋮a+1\))
\(\Rightarrow a+1\inƯ\left(7\right)\)
\(\Rightarrow a+1\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow a\in\left\{-8;-2;0;6\right\}\)
b) \(3a+20⋮a+2\)
\(\Rightarrow3.\left(a+2\right)+14⋮a+2\)
\(\Rightarrow a+2\inƯ\left(14\right)\)(vì \(3\left(a+2\right)⋮a+2\))
\(\Rightarrow a+2\in\left\{-1;-2;-7;-14;1;2;7;14\right\}\)
\(\Rightarrow a\in\left\{-3;-4;-9;-16;-1;0;5;12\right\}\)
Hok tốt nha^^
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
\(20⋮\left(2n+1\right)\)
\(\Rightarrow2n+1\inƯ\left(20\right)=\left\{-20;-10;-5;-4;-2;-1;2;4;5;10;20\right\}\)
\(\Rightarrow n\in\left\{....\right\}\)
\(\text{Tính giùm mk nhé . Các câu còn lại tương tự}\)
a) dễ thấy 2n + 1 là số lẻ
mà 20 là số chẵn => 20 ko chia hết cho 2n + 1 => n thuộc rỗng
b) n + 1 thuộc Ư(15) = { 1; 3; 5; 15; -1; -3; -5; -15 }
=> n thuộc { 0; 2; 4; 14; -2; -4; -6; -16 }
mà n thuộc N => n thuộc { 0; 2; 4; 14 }
c) Ta có Ư(12) = { 1; 3; 4; 12; -1; -3; -4; -12 }
Dễ thấy 2n + 1 là số lẻ => 2n + 1 thuộc { 1; 3; -1; -3 } ( loại các trường hợp chẵn )
=> n thuộc { 0; 1; -1; -2 }
mà n thuộc N => n thuộc { 0; 1 }
d) 6 = 1.6 = 2.3 = (-1)(-6) = (-2)(-3)
mà n và n+1 là 2 số liên tiếp
=> n(n+1) = 2.3 = (-2)(-3)
=> n thuộc { 2; -3 }
mà n thuộc N => n = 2
Bài 15. a) Tìm sáu bội của 6 ; b) Tìm các bội nhỏ hơn 30 của 7.
a) 6 bội của 6 là : {0 ; 6 ; 12 ; 18 ; 24 ; 30}
b) bội nhỏ hơn 30 của 7 là : {0 ; 7 ; 14 ; 21 ; 28}
Bài 16. a) Tìm tất cả các ước của 36 ; b) Tìm các ước lớn hơn 10 của 100
a) Ư(36) = {1 ; 2 ; 3 ; 4 ;6 ; 9 ; 12 ; 18}
b) Ư(100) = {20 ; 25 ; 50}
Bài 17. Tìm số tự nhiên x , biết a) x là bội của 11 và 10 x 50 . b) x vừa là bội của 25 vừa là ước của 150.
a) vậy x E BC(11 và 500) vì 11 và 500 nguyên tố cùng nhau nên BC(11 ; 500) = 500 x 11 = 5500
vậy x \(⋮\)25 và 150 \(⋮\)x B(25) = {0 ; 25 ; 50 ; 75 ; 100 ; 125 ; 150 ; 175...}
Ư(150) = {1 ; 2 ; 3 ; 5 ; 6 ; 10 ; 15 ; 25 ; 30 ; 50 ; 75 ; 150} => a = (25 ; 50 ; 75)
Bài 18. Trong các số: 4827,5670,6915,2007 , số nào: a) chia hết cho 2 ? b) chia hết cho 3 ? c) chia hết cho 5 ? d) chia hết cho 9 ?
a) chia hết cho 2 là : 5670
b) chia hết cho 3 là : 2007 ; 6915 ; 5670 ; 4827
c) chia hết cho 5 là : 5670 ; 6915
d) chia hết cho 9 là : 2007 ;
Bài 19. Trong các số sau: 0,12,17,23,110,53,63,31 , số nào là số nguyên tố?
SNT là : 17 ; 23 ; 53 ; 31
Bài 20. Thay dấu * bằng chữ số thích hợp để mỗi số sau là số nguyên tố: a) 4* b) 7*, c) * d) 2*1
4* = 41 ; 43 ; 47
7* = 71 ; 73 ; 79
* = 2 ; 3 ; 5 ; 7
2*1 ; 221 ; 211 ; 251 ; 271
Bài 21. Thay dấu * bằng chữ số thích hợp để mỗi số sau là hợp số: a) 1* ; b) * 10 c) *1 d) *73.
1* = 11 ; 13 ; 17 ; 19
*10 = ???
*1 = 11 ; 31 ; 41 ; 61 ; 71 ; 91
*73 = 173 ; 373 ; 473 ; 673 ; 773 ; 973
a) 5a + 12 = 5(a + 1) + 7
Để a + 1 là ước của 5a + 12 thì a + 1 là ước của 7
⇒ a + 1 ∈ Ư(7) = {1; 7}
⇒ a ∈ {0; 6}
b) 3a + 20 = 3(a + 2) + 14
Để (3a + 20) ⋮ (a + 2) thì 14 ⋮ (a + 2)
⇒ a + 2 ∈ Ư(14) = {1; 2; 7; 14}
Do a ∈ N nên a ∈ {0; 5; 12}
c) Do a ∈ N nên
a² + 16a ∈ Z (với mọi a ∈ N)
Vậy a² + 16a Z với mọi a ∈ N
d) 3ᵅ + 12 ∈ Z
⇒ 3ᵅ ∈ Z
⇒ a ∈ N