Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(=>\frac{y-x}{xy}=\frac{1}{xy}\)
\(=>xy^2-x^2y=xy\)
\(=>xy^2-x^2y-xy=0\)
\(=>x.\left(y^2-xy-y\right)=0\)
\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)
Ta thấy \(y^2-xy-y=0\)
\(=>y.\left(y-x-y\right)=0\)
\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)
Từ 1 và 2 => x = y = 0
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)
\(\Rightarrow y-x=1\)
Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}+1\)
\(\Leftrightarrow\frac{20}{x+3}-8=8-\frac{18}{x+3}\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=8+8\)
\(\Leftrightarrow\frac{38}{x+3}=16\)
\(\Leftrightarrow x+3=2,375\)
\(\Leftrightarrow x=-0,625\)
\(\left(\frac{5}{x+3}-2\right).4=7-\left(\frac{9}{x+3}+\frac{1}{2}\right).2\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\left(\frac{18}{x+3}+1\right)\)
\(\Leftrightarrow\frac{20}{x+3}-8=7-\frac{18}{x+3}-1\)
\(\Leftrightarrow\frac{20}{x+3}+\frac{18}{x+3}=7-1+8\)
\(\Leftrightarrow\frac{38}{x+3}=14\)
\(\Leftrightarrow\left(x+3\right)14=38\)
\(\Leftrightarrow14x+42=38\)
\(\Leftrightarrow14x=-4\Leftrightarrow x=-\frac{4}{14}=-\frac{2}{7}\)
Vậy \(x=-\frac{2}{7}\)
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
1.
Theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10
Ta có:
\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra:
x = 2 . 8 = 16
y = 2 . 12 = 24
z = 2 . 15 = 30
2/
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
Ta có :x = 2k ; y = 5k
=>x . y = 2k . 5k = 10k2 = 10 => k2 = 1 => k = ±1
Thay k = 1 ta có : x = 2 . 1 = 2 ; y = 5 . 1 = 5
Thay k = -1 ta có : x = 2 . (-1) = -2 ; y = 5 . (-1) = -5
Vậy x = ±2 ; y = ±5
3/
Giải:
Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .
Theo bài ra ta có:
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)
Suy ra :
a = 35 . 9 = 315
b = 35 . 8 = 280
c = 35 . 7 = 245
d = 35 . 6 = 210
Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .
\(\frac{1}{6}\): là phân số thập phân vô hạn tuần hoàn vì mấu 6=2.3 có ước 3 khác 2 và 5;\(\frac{1}{6}\)=0,1666...=0,1(6)
\(\frac{-5}{11}\): là phân số thập phân vô hạn tuần hoàn vì mẫu 11=11 có ước 11 khác 2 và 5; \(\frac{-5}{11}\)=-0,454545....=-0,(45)
\(\frac{4}{9}\): là phân số thập phân vô hạn tuần hoàn vì mẫu 9=\(^{3^2}\)có ước 3 khác 2 và 5; \(\frac{4}{9}\)=0,4444.....=0,(4)
\(\frac{-7}{18}\): là phân số thập phân vô hạn tuần hoàn vì mẫu 18=\(2.3^2\)có ước 3 khác 2 và 5; \(\frac{-7}{18}\)=-0,388888...=-0,3(8)
1/\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
Vì\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)nên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
1/
Vìnên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
1/
Vìnên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
Bài 1:
a) Ta có: 7x = 4y => x/4 = y/7
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/4 = y/7 = y - x / 7 - 4 = 24/3 = 8
x/4 = 8 => x = 8 . 4 = 32
y/7 = 8 => y = 8 . 7 = 56
Vậy x = 32 và y = 56
b) Ta có: x/5 = y/6 => x/20 = y/24 (1)
y/8 = z/7 => y/24 = z/21 (2)
Từ (1) và (2) => x/20 = y/24 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/20 = y/24 = z/21 = x + y - z / 20 + 24 - 21 = 69/23 = 3
x/20 = 3 => x = 3 . 20 = 60
y/24 = 3 => y = 3 . 24 = 72
z/21 = 3 => z = 3 . 21 = 63
Vậy x = 60; y = 72 và z = 63
c) Đặt x/3 = y/4 = k
=> x = 3k và y = 4k
Ta có: x^2 . y^2 = 144
=> (3k)^2 . (4k)^2 = 144
=> 9 . k^2 . 16 . k^2 = 144
=> 144 . k^4 = 144
=> k^4 = 144 : 144 = 1
=> k = 1 hoặc k = -1
Nếu k = 1 => x = 1 . 3 = 3; y = 1 . 4 = 4
Nếu k = -1 => x = -1 . 3 = -3; y = -1 . 4 = -4
Vậy x = {-3; 3} và y = {-4; 4}
* Vẽ hình hơi xấu chút
Vì Om vuông góc với Oa nên \(\widehat{mOb}\) = 900
Vì On vuông góc với Ob nên \(\widehat{bOn}\) = 900
Vì tia Om nằm giữa 2 tia Oa và Ob nên:
\(\widehat{aOm}+\widehat{mOb}=\widehat{aOb}\)
Hay 900 + \(\widehat{mOb}\) = 1200
=> \(\widehat{mOb}\) = 1200 - 900
=> \(\widehat{mOb}\) = 300
Vì tia On nằm giữa 2 tia Oa và Ob nên:
\(\widehat{bOn}+\widehat{nOa}=\widehat{aOb}\)
Hay 900 + \(\widehat{nOa}\) = 1200
=> \(\widehat{nOa}\) = 1200 - 900
=> \(\widehat{nOa}\) = 300
=> \(\widehat{nOa}=\widehat{mOb}\) (= 300)
Vậy \(\widehat{nOa}=\widehat{mOb}\)
=\(\frac{9^{2016}}{16^{2016}}.\frac{16^{2015}}{9^{2015}}.\frac{4}{3}\)
=\(\frac{9}{16}.\frac{4}{3}\)
=\(\frac{3}{4}\)
k cho mk nhoa
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
\(=\left[\frac{9}{16}\left(\frac{9}{16}\right)^{2015}\right].\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
\(=\frac{9}{16}\left[\left(\frac{9}{16}\right)^{2015}.\left(\frac{16}{9}\right)^{2015}\right].\frac{4}{3}\)
\(=\frac{9}{16}\left[\left(\frac{9}{16}.\frac{16}{9}\right)^{2015}\right].\frac{4}{3}\)
\(=\frac{9}{16}.1^{2015}.\frac{4}{3}\)
\(=\frac{9}{16}.\frac{4}{3}\)
\(=\frac{3}{4}\)
\(\frac{x}{9}< \frac{4}{7}< \frac{x+1}{9}\)
\(\Rightarrow\frac{7x}{63}< \frac{36}{63}< \frac{7x+7}{63}\)
\(\Rightarrow7x< 36< 7x+7\)
\(\Rightarrow x< \frac{36}{7}< x+1\)
\(\Rightarrow x< 5\frac{1}{7}< x+1\)
\(\Rightarrow x=5\)
cảm ơn bn nhìu nha.